Show simple item record

Drug‐like Leads for Steric Discrimination between Substrate and Inhibitors of Human Acetylcholinesterase

dc.contributor.authorWildman, Scott A.en_US
dc.contributor.authorZheng, Xiangeen_US
dc.contributor.authorSept, Daviden_US
dc.contributor.authorAuletta, Jeffrey T.en_US
dc.contributor.authorRosenberry, Terrone L.en_US
dc.contributor.authorMarshall, Garland R.en_US
dc.date.accessioned2011-11-10T15:37:14Z
dc.date.available2012-12-03T21:17:30Zen_US
dc.date.issued2011-10en_US
dc.identifier.citationWildman, Scott A.; Zheng, Xiange; Sept, David; Auletta, Jeffrey T.; Rosenberry, Terrone L.; Marshall, Garland R. (2011). "Drug‐like Leads for Steric Discrimination between Substrate and Inhibitors of Human Acetylcholinesterase." Chemical Biology & Drug Design 78(4). <http://hdl.handle.net/2027.42/87054>en_US
dc.identifier.issn1747-0277en_US
dc.identifier.issn1747-0285en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87054
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAcetylcholineen_US
dc.subject.otherAcetylcholinesteraseen_US
dc.subject.otherAChEen_US
dc.subject.otherDockingen_US
dc.subject.otherVirtual Screeningen_US
dc.titleDrug‐like Leads for Steric Discrimination between Substrate and Inhibitors of Human Acetylcholinesteraseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Biochemistry and Molecular Biophysics, Washington University, St. Louis, MO 63110, USAen_US
dc.contributor.affiliationotherDepartment of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87054/1/j.1747-0285.2011.01157.x.pdf
dc.identifier.doi10.1111/j.1747-0285.2011.01157.xen_US
dc.identifier.sourceChemical Biology & Drug Designen_US
dc.identifier.citedreferenceRosenberry T.L. ( 1975 ) Acetylcholinesterase. In: Meister A., editor. Advances in Enzymology, Vol. 43. New York, USA: John Wiley & Sons, p. 103 – 218.en_US
dc.identifier.citedreferenceMillard C.B., Broomfield C.A. ( 1995 ) Anticholinesterases: medical applications of neurochemical principles. J Neurochem; 64: 1909 – 1918.en_US
dc.identifier.citedreferenceTaylor P., Lappi S. ( 1975 ) Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry; 14: 1989 – 1997.en_US
dc.identifier.citedreferenceSussman J.L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. ( 1991 ) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine‐binding protein. Science; 253: 872 – 879.en_US
dc.identifier.citedreferenceSzegletes T., Mallender W.D., Rosenberry T.L. ( 1998 ) Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands. Biochemistry; 37: 4206 – 4216.en_US
dc.identifier.citedreferenceWilson I.B., Ginsburg S. ( 1955 ) A powerful reactivator of alkylphosphate‐inhibited acetylcholinesterase. Biochim Biophys Acta; 18: 168 – 170.en_US
dc.identifier.citedreferenceKitz R.J., Ginsburg S., Wilson I.B. ( 1965 ) Activity‐structure relationships in the reactivation of diethylphosphoryl acetylcholinesterase by phenyl‐1‐methyl pyridinium ketoximes. Biochem Pharmacol; 14: 1471 – 1477.en_US
dc.identifier.citedreferenceSzegletes T., Mallender W.D., Thomas P.J., Rosenberry T.L. ( 1999 ) Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect. Biochemistry; 38: 122 – 133.en_US
dc.identifier.citedreferenceInestrosa N.C., Alvarez A., Pérez C.A., Moreno R.D., Vicente M., Linker C., Casanueva O.I., Soto C., Garrido J. ( 1996 ) Acetylcholinesterase accelerates assembly of amyloid‐b‐peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron; 16: 881 – 891.en_US
dc.identifier.citedreferenceDickerson T.J., Beuscher A.E.I.V., Rogers C.J., Hixon M.S., Yamamoto N., Xu Y., Olson A.J., Janda K.D. ( 2005 ) Discovery of acetylcholinesterase peripheral anionic site ligands through computational refinement of a directed library. Biochemistry; 44: 14845 – 14853.en_US
dc.identifier.citedreferenceEubanks L.M., Rogers C.J., Beuscher A.E.I.V., Koob G.F., Olson A.J., Dickerson T.J., Janda K.D. ( 2006 ) A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol Pharmacol; 3: 773 – 777.en_US
dc.identifier.citedreferenceTrott O., Olson A.J. ( 2010 ) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem; 31: 455 – 461.en_US
dc.identifier.citedreferenceMorris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. ( 2009 ) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem; 30: 2785 – 2791.en_US
dc.identifier.citedreferenceHolbeck S.L. ( 2004 ) Update on NCI in vitro drug screen utilities. Eur J Cancer; 40: 785 – 793.en_US
dc.identifier.citedreferenceBerman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. ( 2000 ) The protein data bank. Nucleic Acids Res; 28: 235 – 242.en_US
dc.identifier.citedreferenceKryger G., Harel M., Giles K., Toker L., Velan B., Lazar A., Kronman C., Barak D., Ariel N., Shafferman A., Silman I., Sussman J.L. ( 2000 ) Structure of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake‐venom toxin fasciculin‐II. Acta Crystallogr; 56: 1385 – 1394.en_US
dc.identifier.citedreferenceBourne Y., Radic Z., Sulzenbacher G., Kim E., Taylor P., Marchot P. ( 2006 ) Substrate and product trafficking through the active center gorge of acetylcholinesterase analyzed by crystallography and equilibrium binding. J Biol Chem; 281: 29256 – 29267.en_US
dc.identifier.citedreferenceRavelli R.B., Raves M.L., Ren Z., Bourgeois D., Roth M., Kroon J., Silman I., Sussman J.L. ( 1998 ) Static Laue diffraction studies on acetylcholinesterase. Acta Crystallogr D Biol Crystallogr; 54: 1359 – 1366.en_US
dc.identifier.citedreferenceHarel M., Schalk I., Ehret‐Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P.H., Silman I., Sussman J.L. ( 1993 ) Quaternary ligand binding to aromatic residues in the active‐site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A; 90: 9031 – 9035.en_US
dc.identifier.citedreferenceHarel M., Sonoda L.K., Silman I., Sussman J.L., Rosenberry T.L. ( 2008 ) Crystal structure of thioflavin T bound to the peripheral site of Torpedo californica acetylcholinesterase reveals how thioflavin T acts as a sensitive fluorescent reporter of ligand binding to the acylation site. J Am Chem Soc; 130: 7856 – 7861.en_US
dc.identifier.citedreferenceBourne Y., Taylor P., Radić Z., Marchot P. ( 2003 ) Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J; 22: 1 – 12.en_US
dc.identifier.citedreferenceWeiner L., Roth E., Silman I. ( 2011 ) Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen. Photochem Photobiol; 87: 308 – 316.en_US
dc.identifier.citedreferenceSanson B., Colletier J.P., Xu Y., Lang P.T., Jiang H., Silman I., Sussman J.L., Weik M. ( 2011 ) Backdoor opening mechanism in acetylcholinesterase based on X‐ray crystallography and MD simulations. Protein Sci; 20: 1114 – 1118.en_US
dc.identifier.citedreferenceWang R., Lu Y., Fang X., Wang S. ( 2004 ) An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein‐ligand complexes. J Chem Inf Comput Sci; 44: 2114 – 2125.en_US
dc.identifier.citedreferenceWang R., Lu Y., Wang S. ( 2003 ) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem; 46: 2287 – 2303.en_US
dc.identifier.citedreferenceOda A., Tsuchida K., Takakura T., Yamaotsu N., Hirono S. ( 2006 ) Comparison of consensus scoring strategies for evaluating computational models of protein‐ligand complexes. J Chem Inf Model; 46: 380 – 391.en_US
dc.identifier.citedreferenceTaylor C.M., Barda Y., Kisselev O.G., Marshall G.R. ( 2008 ) Modulating G‐protein coupled receptor/G‐protein signal transduction by small molecules suggested by virtual screening. J Med Chem; 51: 5297 – 5303.en_US
dc.identifier.citedreferenceYang R.Y.C., Yang K.S., Pike L.J., Marshall G.R. ( 2010 ) Targeting the dimerization of epidermal growth factors with small‐molecule inhibitors. Chem Biol Drug Des; 76: 1 – 9.en_US
dc.identifier.citedreferenceWang R., Lai L., Wang S. ( 2002 ) Further development and validation of empirical scoring functions for structure‐based binding affinity prediction. J Comput Aided Mol Des; 16: 11 – 26.en_US
dc.identifier.citedreferenceClark R.D., Strizhev A., Leonard J.M., Blake J.F., Matthew J.B. ( 2002 ) Consensus scoring for ligand/protein interactions. J Mol Graph Model; 20: 281 – 295.en_US
dc.identifier.citedreferenceLipinski C.A. ( 2000 ) Drug‐like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods; 44: 235 – 249.en_US
dc.identifier.citedreferenceMallender W.D., Szegletes T., Rosenberry T.L. ( 1999 ) Organophosphorylation of acetylcholinesterase in the presence of peripheral site ligands: distinct effects of propidium and fasciculin. J Biol Chem; 274: 8491 – 8499.en_US
dc.identifier.citedreferenceDe Ferrari G.V., Mallender W.D., Inestrosa N.C., Rosenberry T.L. ( 2001 ) Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J Biol Chem; 276: 23282 – 23287.en_US
dc.identifier.citedreferenceAuletta J.T., Johnson J.L., Rosenberry T.L. ( 2010 ) Molecular basis of inhibition of substrate hydrolysis by a ligand bound to the peripheral site of acetylcholinesterase. Chem Biol Interact; 187: 135 – 141.en_US
dc.identifier.citedreferenceEastman J., Wilson E.J., Cervenansky C., Rosenberry T.L. ( 1995 ) Fasciculin 2 binds to a peripheral site on acetylcholinesterase and inhibits substrate hydrolysis by slowing a step involving proton transfer during enzyme acylation. J Biol Chem; 270: 19694 – 19701.en_US
dc.identifier.citedreferenceCamps P., Cusack B., Mallender W.D., El Achab R., Morral J., Muñoz‐Torrero D., Rosenberry T.L. ( 2000 ) Huprine X is a novel high affinity inhibitor of acetylcholinesterase that is of interest for the treatment of Alzheimer’s disease. Mol Pharmacol; 57: 409 – 417.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.