Show simple item record

Galaxy motions, turbulence and conduction in clusters of galaxies

dc.contributor.authorRuszkowski, Mateuszen_US
dc.contributor.authorOh, S. Pengen_US
dc.date.accessioned2011-11-10T15:37:24Z
dc.date.available2012-07-12T17:42:24Zen_US
dc.date.issued2011-06-21en_US
dc.identifier.citationRuszkowski, M.; Oh, S. Peng (2011). "Galaxy motions, turbulence and conduction in clusters of galaxies." Monthly Notices of the Royal Astronomical Society 414(2). <http://hdl.handle.net/2027.42/87062>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87062
dc.description.abstractUnopposed radiative cooling in clusters of galaxies results in excessive mass deposition rates on to the central brightest cluster galaxy. However, the cool cores of galaxy clusters are continuously heated by thermal conduction and turbulent heat diffusion due to minor mergers or the galaxies orbiting the cluster centre. These processes can either reduce the energy requirements for active galactic nucleus heating of cool cores, or they can prevent overcooling altogether. We perform three‐dimensional magnetohydrodynamics simulations including field‐aligned thermal conduction and self‐gravitating particles to model this in detail. Turbulence is not confined to the wakes of galaxies but is instead volume filling, due to the excitation of large‐scale g‐modes. We systematically probe the parameter space of galaxy masses and numbers to assess when the cooling catastrophe is prevented. For a wide range of observationally motivated galaxy parameters, we find that the magnetic field is randomized by stirring motions, restoring the conductive heat flow to the core. The cooling catastrophe either does not occur or it is sufficiently delayed to allow the cluster to experience a major merger that could reset the conditions in the intracluster medium. Whilst dissipation of turbulent motions (and hence dynamical friction heating) is negligible as a heat source, turbulent heat diffusion is extremely important; it predominates in the cluster centre. However, thermal conduction becomes important at larger radii, and simulations without thermal conduction suffer a cooling catastrophe. Conduction is important both as a heat source and to reduce stabilizing buoyancy forces, enabling more efficient diffusion. Turbulence enables conduction, and conduction enables turbulence. In these simulations, the gas vorticity – which is a good indicator of trapped g‐modes – increases with time. The vorticity growth is approximately mirrored by the growth of the magnetic field, which is amplified by turbulence.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherConductionen_US
dc.subject.otherInstabilitiesen_US
dc.subject.otherGalaxies: Activeen_US
dc.subject.otherGalaxies: Clusters: Generalen_US
dc.subject.otherGalaxies: Clusters: Intracluster Mediumen_US
dc.subject.otherX‐Rays: Galaxies: Clustersen_US
dc.titleGalaxy motions, turbulence and conduction in clusters of galaxiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherThe Michigan Center for Theoretical Physics, 3444 Randall Lab, 450 Church St, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Physics, University of California, Santa Barbara, CA 93106, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87062/1/j.1365-2966.2011.18482.x.pdf
dc.identifier.doi10.1111/j.1365-2966.2011.18482.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceAscasibar Y., Markevitch M., 2006, ApJ, 650, 102en_US
dc.identifier.citedreferenceBalbus S. A., 2000, ApJ, 534, 420en_US
dc.identifier.citedreferenceBalbus S. A., Reynolds C. S., 2010, ApJ, 720, L97en_US
dc.identifier.citedreferenceBalbus S. A., Soker N., 1990, ApJ, 357, 353en_US
dc.identifier.citedreferenceBeck R., Shukurov A., Sokoloff D., Wielebinski R., 2003, A&A, 411, 99en_US
dc.identifier.citedreferenceBenson A. J., 2005, MNRAS, 358, 551en_US
dc.identifier.citedreferenceBinney J., Tabor G., 1995, MNRAS, 276, 663en_US
dc.identifier.citedreferenceBinney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn. Princeton Univ. Press, Princeton, NJen_US
dc.identifier.citedreferenceBirnboim Y., Dekel A., 2010, MNRAS, submitted (arXiv:1008.1060)en_US
dc.identifier.citedreferenceBiviano A., Katgert P., 2004, A&A, 424, 779en_US
dc.identifier.citedreferenceBogdanović T., Reynolds C. S., Balbus S. A., Parrish I. J., 2009, ApJ, 704, 211en_US
dc.identifier.citedreferenceBogdanovic T., Reynolds C., Massey R., 2011, ApJ, 731, 7en_US
dc.identifier.citedreferenceBregman J. N., David L. P., 1988, ApJ, 326, 639en_US
dc.identifier.citedreferenceCarilli C. L., Taylor G. B., 2002, ARA&A, 40, 319en_US
dc.identifier.citedreferenceCavagnolo K. W., Donahue M., Voit G. M., Sun M., 2009, ApJS, 182, 12en_US
dc.identifier.citedreferenceCho J., Lazarian A., Honein A., Knaepen B., Kassinos S., Moin P., 2003, ApJ, 589, L77en_US
dc.identifier.citedreferenceCho J., Vishniac E. T., Beresnyak A., Lazarian A., Ryu D., 2009, ApJ, 693, 1449en_US
dc.identifier.citedreferenceChurazov E., Sunyaev R., Forman W., Böhringer H., 2002, MNRAS, 332, 729en_US
dc.identifier.citedreferenceChurazov E., Forman W., Jones C., Sunyaev R., Böhringer H., 2004, MNRAS, 347, 29en_US
dc.identifier.citedreferenceConroy C., Ostriker J. P., 2008, ApJ, 681, 151en_US
dc.identifier.citedreferenceDennis T. J., Chandran B. D. G., 2005, ApJ, 622, 205en_US
dc.identifier.citedreferenceDolag K., Borgani S., Murante G., Springel V., 2009, MNRAS, 399, 497en_US
dc.identifier.citedreferenceEl‐Zant A. A., Kim W.‐T., Kamionkowski M., 2004, MNRAS, 354, 169en_US
dc.identifier.citedreferenceEnßlin T. A., Vogt C., 2006, A&A, 453, 447en_US
dc.identifier.citedreferenceEnßlin T. A., Vogt C., Clarke T. E., Taylor G. B., 2003, ApJ, 597, 870en_US
dc.identifier.citedreferenceEvrard A. E., 1990, ApJ, 363, 349en_US
dc.identifier.citedreferenceFabian A. C., Sanders J. S., Allen S. W., Crawford C. S., Iwasawa K., Johnstone R. M., Schmidt R. W., Taylor G. B., 2003, MNRAS, 344, L43en_US
dc.identifier.citedreferenceFaltenbacher A., Kravtsov A. V., Nagai D., Gottlöber S., 2005, MNRAS, 358, 139en_US
dc.identifier.citedreferenceGuo F., Oh S. P., 2008, MNRAS, 384, 251en_US
dc.identifier.citedreferenceGuo F., Oh S. P., 2009, MNRAS, 400, 1992en_US
dc.identifier.citedreferenceGuo F., Oh S. P., Ruszkowski M., 2008, ApJ, 688, 859en_US
dc.identifier.citedreferenceHernquist L., 1993, ApJS, 86, 389en_US
dc.identifier.citedreferenceHoeft M., Mücket J. P., Gottlöber S., 2004, ApJ, 602, 162en_US
dc.identifier.citedreferenceHwang H. S., Lee M. G., 2008, ApJ, 676, 218en_US
dc.identifier.citedreferenceIapichino L., Niemeyer J. C., 2008, MNRAS, 388, 1089en_US
dc.identifier.citedreferenceJohnstone R. M., Allen S. W., Fabian A. C., Sanders J. S., 2002, MNRAS, 336, 299en_US
dc.identifier.citedreferenceKazantzidis S., Magorrian J., Moore B., 2004, ApJ, 601, 37en_US
dc.identifier.citedreferenceKim W., 2007, ApJ, 667, L5en_US
dc.identifier.citedreferenceKim W., Narayan R., 2003a, ApJ, 596, L139en_US
dc.identifier.citedreferenceKim W.‐T., Narayan R., 2003b, ApJ, 596, 889en_US
dc.identifier.citedreferenceKim W., El‐Zant A. A., Kamionkowski M., 2005, ApJ, 632, 157en_US
dc.identifier.citedreferenceKunz M. W., Schekochihin A. A., Cowley S. C., Binney J. J., Sanders J. S., 2011, MNRAS, 410, 2446en_US
dc.identifier.citedreferenceLee D., Deane A. E., Federrath C., 2009, in Pogorelov N. V., Audit E., Colella P., Zank G. P., eds, ASP Conf. Ser. Vol. 406, A New Multidimensional Unsplit MHD Solver in FLASH3. Astron. Soc. Pac., San Francisco, p. 243en_US
dc.identifier.citedreferenceLin Y.‐T., Mohr J. J., Stanford S. A., 2004, ApJ, 610, 745en_US
dc.identifier.citedreferenceLufkin E. A., Balbus S. A., Hawley J. F., 1995, ApJ, 446, 529en_US
dc.identifier.citedreferenceMcCarthy I. G., Babul A., Bower R. G., Balogh M. L., 2008, MNRAS, 386, 1309en_US
dc.identifier.citedreferenceMcNamara B. R., Nulsen P. E. J., 2007, ARA&A, 45, 117en_US
dc.identifier.citedreferenceNagai D., Kravtsov A. V., 2005, ApJ, 618, 557en_US
dc.identifier.citedreferenceNagai D., Kravtsov A. V., Kosowsky A., 2003, ApJ, 587, 524en_US
dc.identifier.citedreferenceNarayan R., Medvedev M. V., 2001, ApJ, 562, L129en_US
dc.identifier.citedreferenceNatarajan P., Kneib J., Smail I., Treu T., Ellis R., Moran S., Limousin M., Czoske O., 2009, ApJ, 693, 970en_US
dc.identifier.citedreferenceNavarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493en_US
dc.identifier.citedreferenceNewman W. I., Newman A. L., Rephaeli Y., 2002, ApJ, 575, 755en_US
dc.identifier.citedreferenceNorman M. L., Bryan G. L., 1999, in Röser H.‐J., Meisenheimer K., eds, Lecture Notes in Physics, Vol. 530, The Radio Galaxy Messier 87. Springer‐Verlag, Berlin, p. 106en_US
dc.identifier.citedreferenceParrish I. J., Stone J. M., 2005, ApJ, 633, 334en_US
dc.identifier.citedreferenceParrish I. J., Stone J. M., Lemaster N., 2008, ApJ, 688, 905en_US
dc.identifier.citedreferenceParrish I. J., Quataert E., Sharma P., 2009, ApJ, 703, 96en_US
dc.identifier.citedreferenceParrish I. J., Quataert E., Sharma P., 2010, ApJ, 712, L194en_US
dc.identifier.citedreferencePfrommer C., Dursi J. L., 2010, Nat. Phys., 6, 520en_US
dc.identifier.citedreferenceQuataert E., 2008, ApJ, 673, 758en_US
dc.identifier.citedreferenceRebusco P., Churazov E., Böhringer H., Forman W., 2005, MNRAS, 359, 1041en_US
dc.identifier.citedreferenceRuszkowski M., Begelman M. C., 2002, ApJ, 581, 223en_US
dc.identifier.citedreferenceRuszkowski M., Oh S. P., 2010, ApJ, 713, 1332 (RO10)en_US
dc.identifier.citedreferenceRuszkowski M., Brüggen M., Begelman M. C., 2004a, ApJ, 611, 158en_US
dc.identifier.citedreferenceRuszkowski M., Brüggen M., Begelman M. C., 2004b, ApJ, 615, 675en_US
dc.identifier.citedreferenceRuszkowski M., Enßlin T. A., Brüggen M., Heinz S., Pfrommer C., 2007, MNRAS, 378, 662en_US
dc.identifier.citedreferenceRuzmaikin A., Sokolov D., Shukurov A., 1989, MNRAS, 241, 1en_US
dc.identifier.citedreferenceRyu D., Kang H., Cho J., Das S., 2008, Sci, 320, 909en_US
dc.identifier.citedreferenceSakelliou I., Acreman D. M., Hardcastle M. J., Merrifield M. R., Ponman T. J., Stevens I. R., 2005, MNRAS, 360, 1069en_US
dc.identifier.citedreferenceSanders J. S., Fabian A. C., Smith R. K., Peterson J. R., 2010, MNRAS, 402, L11en_US
dc.identifier.citedreferenceScannapieco E., Brüggen M., 2008, ApJ, 686, 927en_US
dc.identifier.citedreferenceSchekochihin A. A., Cowley S. C., 2007, Turbulence and Magnetic Fields in Astrophysical Plasmas. Springer‐Verlag, Berlinen_US
dc.identifier.citedreferenceSchuecker P., Finoguenov A., Miniati F., Böhringer H., Briel U. G., 2004, A&A, 426, 387en_US
dc.identifier.citedreferenceSharma P., Hammett G. W., 2007, J. Comput. Phys., 227, 123en_US
dc.identifier.citedreferenceSharma P., Chandran B. D. G., Quataert E., Parrish I. J., 2009a, ApJ, 699, 348en_US
dc.identifier.citedreferenceSharma P., Chandran B. D. G., Quataert E., Parrish I. J., 2009b, in Heinz S., Wilcots E., eds, AIP Conf. Proc. Vol. 1201, The Monster's Fiery Breath: Feedback in Galaxies, Groups and Clusters. Am. Inst. Phys., New York, p. 363en_US
dc.identifier.citedreferenceSharma P., Colella P., Martin D. F., 2010, SIAM J on Scientific Computing, 32, 3564en_US
dc.identifier.citedreferenceShin M., Strauss M. A., Oguri M., Inada N., Falco E. E., Broadhurst T., Gunn J. E., 2008, AJ, 136, 44en_US
dc.identifier.citedreferenceSpringel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776en_US
dc.identifier.citedreferenceSubramanian K., Shukurov A., Haugen N. E. L., 2006, MNRAS, 366, 1437en_US
dc.identifier.citedreferenceVazza F., Brunetti G., Kritsuk A., Wagner R., Gheller C., Norman M., 2009, A&A, 504, 33en_US
dc.identifier.citedreferenceVazza F., Brunetti G., Gheller C., Brunino R., 2010, Nat, 15, 695en_US
dc.identifier.citedreferenceVogt C., Enßlin T. A., 2003, A&A, 412, 373en_US
dc.identifier.citedreferenceVogt C., Enßlin T. A., 2005, A&A, 434, 67en_US
dc.identifier.citedreferenceVoigt L. M., Fabian A. C., 2004, MNRAS, 347, 1130en_US
dc.identifier.citedreferenceVoit G. M., Cavagnolo K. W., Donahue M., Rafferty D. A., McNamara B. R., Nulsen P. E. J., 2008, ApJ, 681, L5en_US
dc.identifier.citedreferenceZakamska N. L., Narayan R., 2003, ApJ, 582, 162en_US
dc.identifier.citedreferenceZuHone J. A., Markevitch M., Johnson R. E., 2010, ApJ, 717, 908en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.