Show simple item record

CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation

dc.contributor.authorNenninger, Ashley A.en_US
dc.contributor.authorRobinson, Lloyd S.en_US
dc.contributor.authorHammer, Neal D.en_US
dc.contributor.authorEpstein, Elisabeth Ashmanen_US
dc.contributor.authorBadtke, Matthew P.en_US
dc.contributor.authorHultgren, Scott J.en_US
dc.contributor.authorChapman, Matthew R.en_US
dc.date.accessioned2011-11-10T15:37:50Z
dc.date.available2012-09-04T15:27:49Zen_US
dc.date.issued2011-07en_US
dc.identifier.citationNenninger, Ashley A.; Robinson, Lloyd S.; Hammer, Neal D.; Epstein, Elisabeth Ashman; Badtke, Matthew P.; Hultgren, Scott J.; Chapman, Matthew R. (2011). "CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation." Molecular Microbiology 81(2). <http://hdl.handle.net/2027.42/87081>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87081
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleCsgE is a curli secretion specificity factor that prevents amyloid fibre aggregationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 830 North University, Ann Arbor, MI 48109, USA.en_US
dc.contributor.affiliationotherDepartment of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St Louis, MO 63110, USA.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87081/1/MMI_7706_sm_FigureS1-3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87081/2/j.1365-2958.2011.07706.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2011.07706.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceBann, J.G., and Frieden, C. ( 2004 ) Folding and domain‐domain interactions of the chaperone PapD measured by 19F NMR. Biochemistry 43: 13775 – 13786.en_US
dc.identifier.citedreferenceBarnhart, M.M., and Chapman, M.R. ( 2006 ) Curli biogenesis and function. Annu Rev Microbiol 60: 131 – 147.en_US
dc.identifier.citedreferenceBarnhart, M.M., Pinkner, J.S., Soto, G.E., Sauer, F.G., Langermann, S., Waksman, G., et al. ( 2000 ) PapD‐like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci USA 97: 7709 – 7714.en_US
dc.identifier.citedreferenceBarnhart, M.M., Lynem, J., and Chapman, M.R. ( 2006 ) GlcNAc‐6P levels modulate the expression of Curli fibers by Escherichia coli. J Bacteriol 188: 5212 – 5219.en_US
dc.identifier.citedreferenceBian, Z., and Normark, S. ( 1997 ) Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J 16: 5827 – 5836.en_US
dc.identifier.citedreferenceBose, N., and Taylor, R.K. ( 2005 ) Identification of a TcpC‐TcpQ outer membrane complex involved in the biogenesis of the toxin‐coregulated pilus of Vibrio cholerae. J Bacteriol 187: 2225 – 2232.en_US
dc.identifier.citedreferenceBrok, R., Van Gelder, P., Winterhalter, M., Ziese, U., Koster, A.J., de Cock, H., et al. ( 1999 ) The C‐terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. J Mol Biol 294: 1169 – 1179.en_US
dc.identifier.citedreferenceBuchanan, S.K., Smith, B.S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., et al. ( 1999 ) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 6: 56 – 63.en_US
dc.identifier.citedreferenceBullitt, E., Jones, C.H., Striker, R., Soto, G., Jacob‐Dubuisson, F., Pinkner, J., et al. ( 1996 ) Development of pilus organelle subassemblies in vitro depends on chaperone uncapping of a beta zipper. Proc Natl Acad Sci USA 93: 12890 – 12895.en_US
dc.identifier.citedreferenceCasadaban, M.J. ( 1976 ) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104: 541 – 555.en_US
dc.identifier.citedreferenceChapman, M.R., Robinson, L.S., Pinkner, J.S., Roth, R., Heuser, J., Hammar, M., et al. ( 2002 ) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295: 851 – 855.en_US
dc.identifier.citedreferenceCollinson, S.K., Parker, J.M., Hodges, R.S., and Kay, W.W. ( 1999 ) Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. J Mol Biol 290: 741 – 756.en_US
dc.identifier.citedreferenceCrago, A.M., and Koronakis, V. ( 1998 ) Salmonella InvG forms a ring‐like multimer that requires the InvH lipoprotein for outer membrane localization. Mol Microbiol 30: 47 – 56.en_US
dc.identifier.citedreferenceDaniel, A., Singh, A., Crowther, L.J., Fernandes, P.J., Schreiber, W., and Donnenberg, M.S. ( 2006 ) Interaction and localization studies of enteropathogenic Escherichia coli type IV bundle‐forming pilus outer membrane components. Microbiology 152: 2405 – 2420.en_US
dc.identifier.citedreferenceDatsenko, K.A., and Wanner, B.L. ( 2000 ) One‐step inactivation of chromosomal genes in Escherichia coli K‐12 using PCR products. Proc Natl Acad Sci USA 97: 6640 – 6645.en_US
dc.identifier.citedreferenceDodson, K.W., Jacob‐Dubuisson, F., Striker, R.T., and Hultgren, S.J. ( 1993 ) Outer‐membrane PapC molecular usher discriminately recognizes periplasmic chaperone‐pilus subunit complexes. Proc Natl Acad Sci USA 90: 3670 – 3674.en_US
dc.identifier.citedreferenceEpstein, E.A., Reizian, M.A., and Chapman, M.R. ( 2009 ) Spatial clustering of the curlin secretion lipoprotein requires curli fiber assembly. J Bacteriol 191: 608 – 615.en_US
dc.identifier.citedreferenceFilloux, A., Hachani, A., and Bleves, S. ( 2008 ) The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154: 1570 – 1583.en_US
dc.identifier.citedreferenceFonte, V., Kapulkin, V., Taft, A., Fluet, A., Friedman, D., and Link, C.D. ( 2002 ) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 99: 9439 – 9444.en_US
dc.identifier.citedreferenceFonte, V., Kipp, D.R., Yerg, J., 3rd, Merin, D., Forrestal, M., Wagner, E., et al. ( 2008 ) Suppression of in vivo beta‐amyloid peptide toxicity by overexpression of the HSP‐16.2 small chaperone protein. J Biol Chem 283: 784 – 791.en_US
dc.identifier.citedreferenceGerlach, R.G., and Hensel, M. ( 2007 ) Protein secretion systems and adhesins: the molecular armory of Gram‐negative pathogens. Int J Med Microbiol 297: 401 – 415.en_US
dc.identifier.citedreferenceGibson, D.L., White, A.P., Rajotte, C.M., and Kay, W.W. ( 2007 ) AgfC and AgfE facilitate extracellular thin aggregative fimbriae synthesis in Salmonella enteritidis. Microbiology 153: 1131 – 1140.en_US
dc.identifier.citedreferenceGuzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. ( 1995 ) Tight regulation, modulation, and high‐level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 4121 – 4130.en_US
dc.identifier.citedreferenceHammar, M., Arnqvist, A., Bian, Z., Olsen, A., and Normark, S. ( 1995 ) Expression of two csg operons is required for production of fibronectin‐ and congo red‐binding curli polymers in Escherichia coli K‐12. Mol Microbiol 18: 661 – 670.en_US
dc.identifier.citedreferenceHammar, M., Bian, Z., and Normark, S. ( 1996 ) Nucleator‐dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci USA 93: 6562 – 6566.en_US
dc.identifier.citedreferenceHammer, N.D., Schmidt, J.C., and Chapman, M.R. ( 2007 ) The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci USA 104: 12494 – 12499.en_US
dc.identifier.citedreferenceHardie, K.R., Lory, S., and Pugsley, A.P. ( 1996a ) Insertion of an outer membrane protein in Escherichia coli requires a chaperone‐like protein. EMBO J 15: 978 – 988.en_US
dc.identifier.citedreferenceHardie, K.R., Seydel, A., Guilvout, I., and Pugsley, A.P. ( 1996b ) The secretin‐specific, chaperone‐like protein of the general secretory pathway: separation of proteolytic protection and piloting functions. Mol Microbiol 22: 967 – 976.en_US
dc.identifier.citedreferenceHatters, D.M., Lindner, R.A., Carver, J.A., and Howlett, G.J. ( 2001 ) The molecular chaperone, alpha‐crystallin, inhibits amyloid formation by apolipoprotein C‐II. J Biol Chem 276: 33755 – 33761.en_US
dc.identifier.citedreferenceIsaac, D.D., Pinkner, J.S., Hultgren, S.J., and Silhavy, T.J. ( 2005 ) The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proc Natl Acad Sci USA 102: 17775 – 17779.en_US
dc.identifier.citedreferenceJones, C.H., Danese, P.N., Pinkner, J.S., Silhavy, T.J., and Hultgren, S.J. ( 1997 ) The chaperone‐assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J 16: 6394 – 6406.en_US
dc.identifier.citedreferenceKanekiyo, T., Ban, T., Aritake, K., Huang, Z.L., Qu, W.M., Okazaki, I., et al. ( 2007 ) Lipocalin‐type prostaglandin D synthase/beta‐trace is a major amyloid beta‐chaperone in human cerebrospinal fluid. Proc Natl Acad Sci USA 104: 6412 – 6417.en_US
dc.identifier.citedreferenceKuehn, M.J., Normark, S., and Hultgren, S.J. ( 1991 ) Immunoglobulin‐like PapD chaperone caps and uncaps interactive surfaces of nascently translocated pilus subunits. Proc Natl Acad Sci USA 88: 10586 – 10590.en_US
dc.identifier.citedreferenceLiu, J., Rutz, J.M., Feix, J.B., and Klebba, P.E. ( 1993 ) Permeability properties of a large gated channel within the ferric enterobactin receptor, FepA. Proc Natl Acad Sci USA 90: 10653 – 10657.en_US
dc.identifier.citedreferenceLoferer, H., Hammar, M., and Normark, S. ( 1997 ) Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin‐binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26: 11 – 23.en_US
dc.identifier.citedreferenceNenninger, A.A., Robinson, L.S., and Hultgren, S.J. ( 2009 ) Localized and efficient curli nucleation requires the chaperone‐like amyloid assembly protein CsgF. Proc Natl Acad Sci USA 106: 900 – 905.en_US
dc.identifier.citedreferenceNilsson, M.R. ( 2004 ) Techniques to study amyloid fibril formation in vitro. Methods 34: 151 – 160.en_US
dc.identifier.citedreferenceNouwen, N., Ranson, N., Saibil, H., Wolpensinger, B., Engel, A., Ghazi, A., and Pugsley, A.P. ( 1999 ) Secretin PulD: association with pilot PulS, structure, and ion‐ conducting channel formation. Proc Natl Acad Sci USA 96: 8173 – 8177.en_US
dc.identifier.citedreferenceNouwen, N., Stahlberg, H., Pugsley, A.P., and Engel, A. ( 2000 ) Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J 19: 2229 – 2236.en_US
dc.identifier.citedreferenceOlsen, A., Jonsson, A., and Normark, S. ( 1989 ) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338: 652 – 655.en_US
dc.identifier.citedreferenceOlsen, A., Wick, M.J., Morgelin, M., and Bjorck, L. ( 1998 ) Curli, fibrous surface proteins of Escherichia coli, interact with major histocompatibility complex class I molecules. Infect Immun 66: 944 – 949.en_US
dc.identifier.citedreferencePhan, G., Remaut, H., Wang, T., Allen, W.J., Lebedev, A., Pirker, K.F., et al. ( 2011 ) Crystal structure of the FimD usher bound to its cognate FimC:FimH substrate. Nature (in press).en_US
dc.identifier.citedreferenceRamm, K., and Pluckthun, A. ( 2000 ) The periplasmic Escherichia coli peptidylprolyl cis,trans‐isomerase FkpA. II. Isomerase‐independent chaperone activity in vitro. J Biol Chem 275: 17106 – 17113.en_US
dc.identifier.citedreferenceRemaut, H., Tang, C., Henderson, N.S., Pinkner, J.S., Wang, T., Hultgren, S.J., et al. ( 2008 ) Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133: 640 – 652.en_US
dc.identifier.citedreferenceRobinson, L.S., Ashman, E.M., Hultgren, S.J., and Chapman, M.R. ( 2006 ) Secretion of curli fibre subunits is mediated by the outer membrane‐localized CsgG protein. Mol Microbiol 59: 870 – 881.en_US
dc.identifier.citedreferenceRomling, U., Bian, Z., Hammar, M., Sierralta, W.D., and Normark, S. ( 1998 ) Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180: 722 – 731.en_US
dc.identifier.citedreferenceSaier, M.H., Jr ( 2006 ) Protein secretion and membrane insertion systems in gram‐negative bacteria. J Membr Biol 214: 75 – 90.en_US
dc.identifier.citedreferenceSalgado, P.S., Taylor, J.D., Cota, E., and Matthews, S.J. ( 2011 ) Extending the usability of the phasing power of diselenide bonds: SeCys SAD phasing of CsgC using a non‐auxotrophic strain. Acta Crystallogr D Biol Crystallogr 67: 8 – 13.en_US
dc.identifier.citedreferenceSauer, F.G., Futterer, K., Pinkner, J.S., Dodson, K.W., Hultgren, S.J., and Waksman, G. ( 1999 ) Structural basis of chaperone function and pilus biogenesis. Science 285: 1058 – 1061.en_US
dc.identifier.citedreferenceSauer, F.G., Barnhart, M., Choudhury, D., Knight, S.D., Waksman, G., and Hultgren, S.J. ( 2000 ) Chaperone‐assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 10: 548 – 556.en_US
dc.identifier.citedreferenceSauer, F.G., Remaut, H., Hultgren, S.J., and Waksman, G. ( 2004 ) Fiber assembly by the chaperone‐usher pathway. Biochim Biophys Acta 1694: 259 – 267.en_US
dc.identifier.citedreferenceSchmidt, S.A., Bieber, D., Ramer, S.W., Hwang, J., Wu, C.Y., and Schoolnik, G. ( 2001 ) Structure‐function analysis of BfpB, a secretin‐like protein encoded by the bundle‐forming‐pilus operon of enteropathogenic Escherichia coli. J Bacteriol 183: 4848 – 4859.en_US
dc.identifier.citedreferenceShevchik, V.E., and Condemine, G. ( 1998 ) Functional characterization of the Erwinia chrysanthemi OutS protein, an element of a type II secretion system. Microbiology 144: 3219 – 3228.en_US
dc.identifier.citedreferenceShevchik, V.E., Robert‐Baudouy, J., and Condemine, G. ( 1997 ) Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J 16: 3007 – 3016.en_US
dc.identifier.citedreferenceStathopoulos, C., Georgiou, G., and Earhart, C.F. ( 1996 ) Characterization of Escherichia coli expressing an Lpp'OmpA(46‐159)‐PhoA fusion protein localized in the outer membrane. Appl Microbiol Biotechnol 45: 112 – 119.en_US
dc.identifier.citedreferenceTanaka, N., Tanaka, R., Tokuhara, M., Kunugi, S., Lee, Y.F., and Hamada, D. ( 2008 ) Amyloid fibril formation and chaperone‐like activity of peptides from alphaA‐crystallin. Biochemistry 47: 2961 – 2967.en_US
dc.identifier.citedreferenceThanassi, D.G. ( 2002 ) Ushers and secretins: channels for the secretion of folded proteins across the bacterial outer membrane. J Mol Microbiol Biotechnol 4: 11 – 20.en_US
dc.identifier.citedreferenceVidal, O., Longin, R., Prigent‐Combaret, C., Dorel, C., Hooreman, M., and Lejeune, P. ( 1998 ) Isolation of an Escherichia coli K‐12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180: 2442 – 2449.en_US
dc.identifier.citedreferenceWalton, T.A., and Sousa, M.C. ( 2004 ) Crystal structure of Skp, a prefoldin‐like chaperone that protects soluble and membrane proteins from aggregation. Mol Cell 15: 367 – 374.en_US
dc.identifier.citedreferenceWang, X., Smith, D.R., Jones, J.W., and Chapman, M.R. ( 2007 ) In vitro polymerization of a functional Escherichia coli amyloid protein. J Biol Chem 282: 3713 – 3719.en_US
dc.identifier.citedreferenceZogaj, X., Bokranz, W., Nimtz, M., and Romling, U. ( 2003 ) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71: 4151 – 4158.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.