Show simple item record

Interfacial Stoichiometry and Adhesion at Metal/α‐Al 2 O 3 Interfaces

dc.contributor.authorLi, Hong‐Taoen_US
dc.contributor.authorChen, Lian‐Fengen_US
dc.contributor.authorYuan, Xunen_US
dc.contributor.authorZhang, Wen‐Qingen_US
dc.contributor.authorSmith, John R.en_US
dc.contributor.authorEvans, Anthony G.en_US
dc.date.accessioned2011-11-10T15:37:55Z
dc.date.available2012-07-12T17:42:24Zen_US
dc.date.issued2011-06en_US
dc.identifier.citationLi, Hong‐tao ; Chen, Lian‐feng ; Yuan, Xun; Zhang, Wen‐qing ; Smith, John R.; Evans, Anthony G. (2011). "Interfacial Stoichiometry and Adhesion at Metal/αâ Al 2 O 3 Interfaces." Interfacial Stoichiometry and Adhesion at Metal/αâ Al 2 O 3 Interfaces 94: s154-s159. <http://hdl.handle.net/2027.42/87085>en_US
dc.identifier.issn0002-7820en_US
dc.identifier.issn1551-2916en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87085
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleInterfacial Stoichiometry and Adhesion at Metal/α‐Al 2 O 3 Interfacesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherState Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, Chinaen_US
dc.contributor.affiliationotherGraduate School of the Chinese Academy of Sciences, Beijing 200049, Chinaen_US
dc.contributor.affiliationotherEntry‐Exit Inspection & Quarantine Bureau, Shanghai 200135, Chinaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87085/1/jace4405.pdf
dc.identifier.doi10.1111/j.1551-2916.2011.04405.xen_US
dc.identifier.sourceInterfacial Stoichiometry and Adhesion at Metal/α‐Al 2 O 3 Interfacesen_US
dc.identifier.citedreferenceA. Rabiei and A. G. Evans, “ Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma‐Sprayed Thermal Barrier Coatings,” Acta Mater., 48, 3963 – 76 ( 2000 ).en_US
dc.identifier.citedreferenceN. P. Padture, M. Gell, and E. H. Jordan, “ Materials Science‐Thermal Barrier Coatings for Gas‐Turbine Engine Apptications,” Science, 296, 280 – 4 ( 2002 ).en_US
dc.identifier.citedreferenceD. W. Goodman, “ Model Studies in Catalysis Using Surface Science Probes,” Chem. Rev., 95, 523 – 36 ( 1995 ).en_US
dc.identifier.citedreferenceR. C. Santana, S. Jongpatiwut, W. E. Alvarez, and D. E. Resasco, “ Gas‐phase Kinetic Studies of Tetralin Hydrogenation on Pt/Alumina,” Ind. Eng. Chem. Res., 44, 7928 – 34 ( 2005 ).en_US
dc.identifier.citedreferenceF. Ahmed, M. K. Alam, A. Suzuki, M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, C. A. Del Carpio, M. Kubo, and A. Miyamoto, “ Dynamics of Hydrogen Spillover on Pt/Gamma‐Al 2 O 3 Catalyst Surface: A Quantum Chemical Molecular Dynamics Study,” J. Phys. Chem. C, 113, 15676 – 83 ( 2009 ).en_US
dc.identifier.citedreferenceC. C. Young, J. G. Duh, and C. S. Huang, “ Improved Characteristics of Electroless Cu Deposition on Pt‐Ag Metallized Al 2 O 3 Substrates in Microelectronics Packaging,” Surf. Coat. Technol., 145, 215 – 2 ( 2001 ).en_US
dc.identifier.citedreferenceH. J. Grabke, D. Wiemer, and H. Viefhaus, “ Segregation of Sulfur During Growth of Oxide Scales,” Appl. Surf. Sci., 47, 243 – 50 ( 1991 ).en_US
dc.identifier.citedreferenceH. J. Grabke, G. Kurbatov, and H. J. Schmutzler, “ Segregation Beneath Oxide Scales,” Oxid. Met., 43, 97 – 114 ( 1995 ).en_US
dc.identifier.citedreferenceJ. A. Haynes, B. A. Pint, K. L. More, Y. Zhang, and I. G. Wright, “ Influence of Sulfur, Platinum, and Hafnium on the Oxidation Behavior of CVD NiAl Bond Coatings,” Oxid. Met., 58, 513 – 44 ( 2002 ).en_US
dc.identifier.citedreferenceP. Y. Hou, “ Segregation Phenomena at Thermally Grown Al 2 O 3 /Alloy Interfaces,” Annu. Rev. Mater. Res., 38, 275 – 98 ( 2008 ).en_US
dc.identifier.citedreferenceF. Ernst, “ Metal–Oxide Interfaces,” Mater. Sci. Eng., R 14, 97 – 156 ( 1995 ).en_US
dc.identifier.citedreferenceM. W. Finnis, “ The Theory of Metal–Ceramic Interfaces,” J. Phys.: Condens. Matter, 8, 5811 – 36 ( 1996 ).en_US
dc.identifier.citedreferenceJ. M. Howe, “ Bonding, Structure, and Properties of Metal–Ceramic Interfaces.1. Chemical Bonding, Chemical‐Reaction, and Interfacial Structure,” Int. Mater. Rev., 38, 233 – 56 ( 1993 ).en_US
dc.identifier.citedreferenceE. Saiz, A. P. Tomsia, and R. M. Cannon, “ Wetting and Work of Adhesion in Oxide/Metal Systems ”; pp. 65 – 82 in Ceramic Microstructure: Control at the Atomic Level, Edited by A.P Tomsia, and A. M. Glaeser. Plenum Press, New York, 1998.en_US
dc.identifier.citedreferenceE. Saiz, R. M. Cannon, and A. P. Tomsia, “ Energetics and Atomic Transport at Liquid Metal/Al 2 O 3 Interfaces,” Acta Mater., 47, 4209 – 20 ( 1999 ).en_US
dc.identifier.citedreferenceE. Saiz, R. M. Cannon, and A. P. Tomsia, “ High‐Temperature Wetting and the Work of Adhesion in Metal/Oxide Systems,” Annu. Rev. Mater. Res., 38, 197 – 226 ( 2008 ).en_US
dc.identifier.citedreferenceD. Chatain, I. Rivollet, and N. Eustathopoulos, “ Thermodynamic Adhesion in Non‐Reactive Liquid Metal–Alumina Systems,” J. Chim. Phys., 83, 561 – 7 ( 1986 ).en_US
dc.identifier.citedreferenceD. Chatain, I. Rivollet, and N. Eustathopoulos, “ Estimation of The Thermodynamic Adhesion and the Contact‐Angle in the Nonreactive metal‐Ionocovalent Oxide Systems,” J. Chim. Phys., 84, 201 – 3 ( 1987 ).en_US
dc.identifier.citedreferenceD. Chatain, L. Coudurier, and N. Eustathopoulos, “ Wetting and Interfacial Bonding in Ionocovalent Oxide‐liquid Metal Systems,” Rev. Phys. Appl., 23, 1055 – 64 ( 1988 ).en_US
dc.identifier.citedreferenceM. Degraef, B. J. Dalgleish, M. R. Turner, and A. G. Evans, “ Interfaces Between Alumina and Platinum: Structure, Bonding and Fracture Resistance,” Acta Metal. Mater., 40, S333 – S344 ( 1992 ).en_US
dc.identifier.citedreferenceM. Rühle, “ Structure and Composition of Metal/Ceramic Interfaces,” J. Eur. Ceram. Soc., 16, 353 – 65 ( 1996 ).en_US
dc.identifier.citedreferenceN. Eustathopoulos and B. Drevet, “ Determination of the Nature of Metal‐Oxide Interfacial Interactions from Sessile Drop Data,” Mater. Sci. Eng. A, 249, 176 – 83 ( 1998 ).en_US
dc.identifier.citedreferenceN. Eustathopoulos, B. Drevet, and M. L. Muolo, “ The Oxygen‐Wetting Transition in Metal/Oxide Systems,” Mater. Sci. Eng. A, 300, 34 – 40 ( 2001 ).en_US
dc.identifier.citedreferenceN. Eustathopoulos, “ Progress in Understanding and Modeling Reactive Wetting of Metals on Ceramics,” Curr. Opin. Solid State Mater. Sci., 9, 152 – 60 ( 2005 ).en_US
dc.identifier.citedreferenceA. Bogicevic and D. R. Jennison, “ Variations in the Nature of Metal Adsorption on Ultrathin Al 2 O 3 Films,” Phys. Rev. Lett., 82, 4050 – 3 ( 1999 ).en_US
dc.identifier.citedreferenceC. Verdozzi, D. R. Jennison, P. A. Schultz, and M. P. Sears, “ Sapphire(0001) Surface, Clean and with D‐Metal Overlayers,” Phys. Rev. Lett., 82, 799 – 802 ( 1999 ).en_US
dc.identifier.citedreferenceJ. R. Smith and W. Zhang, “ Stoichiometric Interfaces of Al and Ag with Al 2 O 3,” Acta Mater., 48, 4395 – 403 ( 2000 ).en_US
dc.identifier.citedreferenceZ. Łodziana and J. K. Norskov, “ Adsorption of Cu and Pd on Alpha‐Al 2 O 3 (0001) Surfaces with Different Stoichiometries,” J. Chem. Phys., 115, 11261 – 7 ( 2001 ).en_US
dc.identifier.citedreferenceD. J. Siegel, L. G. Hector, and J. B. Adams, “ Adhesion, Atomic Structure, and Bonding at the Al(111)/Alpha‐Al 2 O 3 (0001) Interface: A First Principles Study,” Phys. Rev. B, 65, 085415, 19pp ( 2002 ).en_US
dc.identifier.citedreferenceI. G. Batyrev and L. Kleinman, “ In‐plane Relaxation of Cu(111) and Al(111)/Alpha‐Al 2 O 3 (0001) Interfaces,” Phys. Rev. B, 64, 033410, 4pp ( 2001 ).en_US
dc.identifier.citedreferenceI. G. Batirev, A. Alavi, M. W. Finnis, and T. Deutsch, “ First‐Principles Calculations of the Ideal Cleavage Energy of Bulk Niobium(111)/Alpha‐Alumina(0001) Interfaces,” Phys. Rev. Lett., 82, 1510 – 3 ( 1999 ).en_US
dc.identifier.citedreferenceI. G. Batyrev, A. Alavi, and M. W. Finnis, “ Equilibrium and Adhesion of Nb/Sapphire: The Effect of Oxygen Partial Pressure,” Phys. Rev. B, 62, 4698 – 706 ( 2000 ).en_US
dc.identifier.citedreferenceW. Zhang and J. R. Smith, “ Nonstoichiometric Interfaces and Al 2 O 3 Adhesion with Al and Ag,” Phys. Rev. Lett., 85, 3225 – 8 ( 2000 ).en_US
dc.identifier.citedreferenceW. Zhang and J. R. Smith, “ Stoichiometry and Adhesion of Nb/Al 2 O 3,” Phys. Rev B, 61, 16883 – 9 ( 2000 ).en_US
dc.identifier.citedreferenceW. Zhang, J. R. Smith, and A. G. Evans, “ The Connection between Ab Initio Calculations and Interface Adhesion Measurements on Metal/Oxide Systems: Ni/Al2O3 and Cu/Al2O3,” Acta Mater., 50, 3803 – 16 ( 2002 ).en_US
dc.identifier.citedreferenceJ. W. Feng, W. Q. Zhang, and W. Jiang, “ Ab Initio Study of Ag/Al 2 O 3 and Au/Al 2 O 3 Interfaces,” Phys. Rev. B, 72 [1–11] 115423 ( 2005 ).en_US
dc.identifier.citedreferenceW. Zhang, J. R. Smith, and X. G. Wang, “ Thermodynamics from Ab Initio Computations,” Phys. Rev. B, 70, 024103, 8pp ( 2004 ).en_US
dc.identifier.citedreferenceJ. Bruley, R. Brydson, H. Mülleejans, J. Mayer, G. Gutekunst, W. Mader, D. Knauss, and M. Rühle, “ Investigations of the Chemistry and Bonding at Niobiumsapphire Interfaces,” J. Mater. Res., 9, 2574 – 83 ( 1994 ).en_US
dc.identifier.citedreferenceG. Dehm, M. Ruhle, G. Ding, and R. Raj, “ Growth and Structure of Copper Thin‐Films Deposited on (0001) Sapphire by Molecular‐Beam Epitaxy,” Philos. Mag. B, 71, 1111 – 24 ( 1995 ).en_US
dc.identifier.citedreferenceC. Scheu, G. Dehm, M. Rühle, and R. Brydson, “ Electron‐Energy‐Loss Spectroscopy Studies of Cu‐Alpha‐Al 2 O 3 Interfaces Grown by Molecular Beam Epitaxy,” Philos. Mag.A, 78, 439 – 65 ( 1998 ).en_US
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, and M. Ernzerhof, “ Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., 77, 3865 – 8 ( 1996 ).en_US
dc.identifier.citedreferenceG. Kresse and J. Hafner, “ Ab Initio Molecular Dynamics for Liquid Metals,” Phys. Rev. B, 47, 558 – 61 ( 1993 ).en_US
dc.identifier.citedreferenceG. Kresse and J. Furthmuller, “ Efficient Iterative Schemes for Ab Initio Total‐Energy Calculations using a Plane‐Wave Basis Set,” Phys. Rev. B, 54, 11169 – 86 ( 1996 ).en_US
dc.identifier.citedreferenceP. E. Blöchl, “ Projector Augmented‐Wave Method,” Phys. Rev. B, 50, 17953 – 79 ( 1994 ).en_US
dc.identifier.citedreferenceG. Kresse and D. Joubert, “ From Ultrasoft Pseudopotentials to the Projector Augmented‐Wave Method,” Phys. Rev. B, 59, 1758 – 75 ( 1999 ).en_US
dc.identifier.citedreferenceH. T. Li, J. W. Feng, W. Q. Zhang, W. Jiang, H. Gu, and J. R. Smith, “ Ab Initio Thermodynamic Study of the Structure and Chemical Bonding of a Beta‐Ni 1− x Al x /Alpha‐Al 2 O 3 Interface,” Phys. Rev. B, 80, 205422, 12pp ( 2009 ).en_US
dc.identifier.citedreferenceI. Batyrev, A. Alavi, and M. W. Finnis, “ Ab Initio Calculations on the Al 2 O 3 (0001) Surface,” Faraday Discuss., 114, 33 – 43 ( 1999 ).en_US
dc.identifier.citedreferenceX. G. Wang, A. Chaka, and M. Scheffler, “ Effect of the Environment on Alpha‐Al 2 O 3 (0001) Surface Structures,” Phys. Rev. Lett., 84, 3650 – 3 ( 2000 ).en_US
dc.identifier.citedreferenceF. R. D. Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals, North‐Holland, New York, 1988.en_US
dc.identifier.citedreferenceA. K. Niessen and A.R Miedema, “ The ‘Macroscopic Atom’ Model: An Easy Tool to Predict Thermodynamic Quantities”; pp. 29 – 54 in Thermochemistry of Alloys, edited by H. Brodowsky, and H. J. Schaller. Kluwer Academic Publishers, Boston, 1987.en_US
dc.identifier.citedreferenceA. R. Miedema, “ Surface Energies of Solid Metals,” Z. Metallkd., 69, 287 – 92 ( 1978 ).en_US
dc.identifier.citedreferenceR. S. Mulliken, “ Electronic Population Analysis on Lcao‐Mo Molecular Wave Functions.1,” J. Chem. Phys., 23, 1833 – 40 ( 1955 ).en_US
dc.identifier.citedreferenceO. Kubaschewski, C. B. Alcock, and P. J. Spencer, Materials Thermochemistry. Pergamon Press, Oxford, 1993.en_US
dc.identifier.citedreferenceD. R. Lide, CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, 1997.en_US
dc.identifier.citedreferenceJ. G. Li, “ Wetting and Interfacial Bonding of Metals with Ionocovalent Oxides,” J. Am. Ceram. Soc., 75, 3118 – 26 ( 1992 ).en_US
dc.identifier.citedreferenceD. M. Lipkin, J. N. Israelachvili, and D. R. Clarke, “ Estimating the Metal‐Ceramic Van der Waals Adhesion Energy,” Philos. Mag. A, 76, 715 – 28 ( 1997 ).en_US
dc.identifier.citedreferenceC. Kittel, Introduction to Solid State Physics. Wiley, New York, 1971.en_US
dc.identifier.citedreferenceJ. E. McDonald and J. G. Eberhart, “ Adhesion in Aluminum Oxide‐Metal Systems,” Trans. Metall. Soc., AIME, 233, 512 – 7 ( 1965 ).en_US
dc.identifier.citedreferenceY. V. Naidich, “ The Wettability of Solids by Liquid Metals,” Prog. Surf. Membr. Sci., 14, 353 – 484 ( 1981 ).en_US
dc.identifier.citedreferenceA. M. Stoneham and P. W. Tasker, “ Metal Non‐Metal and Other Interfaces—The Role of Image Interactions,” J. Phys. C: Solid State Phys., 18, L543 – L548 ( 1985 ).en_US
dc.identifier.citedreferenceM. W. Finnis, “ Metal Ceramic Cohesion and the Image Interaction,” Acta Metall. Mater., 40, S25 – 37 ( 1992 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.