Show simple item record

Impact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperature

dc.contributor.authorWang, Jiaen_US
dc.contributor.authorRajakulendran, Nirusanen_US
dc.contributor.authorAmirsadeghi, Sasanen_US
dc.contributor.authorVanlerberghe, Greg C.en_US
dc.date.accessioned2011-11-10T15:38:08Z
dc.date.available2012-10-01T18:34:40Zen_US
dc.date.issued2011-08en_US
dc.identifier.citationWang, Jia; Rajakulendran, Nirusan; Amirsadeghi, Sasan; Vanlerberghe, Greg C. (2011). "Impact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperature." Physiologia Plantarum 142(4). <http://hdl.handle.net/2027.42/87094>en_US
dc.identifier.issn0031-9317en_US
dc.identifier.issn1399-3054en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87094
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleImpact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperatureen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherDepartment of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canadaen_US
dc.contributor.affiliationotherDepartment of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canadaen_US
dc.identifier.pmid21401618en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87094/1/j.1399-3054.2011.01471.x.pdf
dc.identifier.doi10.1111/j.1399-3054.2011.01471.xen_US
dc.identifier.sourcePhysiologia Plantarumen_US
dc.identifier.citedreferenceAmirsadeghi S, Robson CA, McDonald AE, Vanlerberghe GC ( 2006 ) Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. Plant Cell Physiol 47: 1509 – 1519en_US
dc.identifier.citedreferenceArmstrong AF, Badger MR, Day DA, Barthet MM, Smith PMC, Millar AH, Whelan J, Atkin OK ( 2008 ) Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ 31: 1156 – 1169en_US
dc.identifier.citedreferenceApel K, Hirt H ( 2004 ) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55: 373 – 399en_US
dc.identifier.citedreferenceBartoli CG, Pastori GM, Foyer CH ( 2000 ) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123: 335 – 343en_US
dc.identifier.citedreferenceBartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH ( 2006 ) Inter‐relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57: 1621 – 1631en_US
dc.identifier.citedreferenceCampbell C, Atkinson L, Zaragoza‐Castells J, Lundmark M, Atkin O, Hurry V ( 2007 ) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol 176: 375 – 389en_US
dc.identifier.citedreferenceChai T‐T, Simmonds D, Day DA, Colmer TD, Finnegan PM ( 2010 ) Photosynthetic performance and fertility are repressed in GmAOX2b antisense soybean. Plant Physiol 152: 1638 – 1649en_US
dc.identifier.citedreferenceClifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA, Whelan J ( 2005 ) Stress‐induced co‐expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58: 193 – 212en_US
dc.identifier.citedreferenceClifton R, Millar AH, Whelan J ( 2006 ) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non‐phosphorylating bypasses. Biochim Biophys Acta 1757: 730 – 741en_US
dc.identifier.citedreferenceCook D, Fowler S, Fiehn O, Thomashow MF ( 2004 ) A prominent role for the CBF cold response pathway in configuring the low‐temperature metabolome of Arabidopsis. PNAS 101: 15243 – 15248en_US
dc.identifier.citedreferenceDinakar C, Raghavendra AS, Padmasree K ( 2010 ) Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating AOX. Physiol Plant 139: 13 – 26en_US
dc.identifier.citedreferenceDing S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C ( 2009 ) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69: 577 – 592en_US
dc.identifier.citedreferenceFinnegan PM, Soole KL, Umbach AL ( 2004 ) Alternative mitochondrial electron transport proteins in plants. In: Day DA, Millar AH, Whelan J (eds) Plant Mitochondria: From Genome to Function. Kluwer Academic Publishers, Dordrecht, pp 163 – 230en_US
dc.identifier.citedreferenceFiorani F, Umbach AL, Siedow JN ( 2005 ) The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol 139: 1795 – 1805en_US
dc.identifier.citedreferenceFoyer CH, Noctor G ( 2009 ) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidant Redox Signal 11: 861 – 905en_US
dc.identifier.citedreferenceGandin A, Lapointe L, Dizengremel P ( 2009 ) The alternative respiratory pathway allows sink to cope with changes in carbon availability in the sink‐limited plant Erythronium americanum. J Exp Bot 60: 4235 – 4248en_US
dc.identifier.citedreferenceGiraud E, Ho LHM, Clifton R, Carroll A, Estavillo G, Tan Y‐F, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J ( 2008 ) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147: 595 – 610en_US
dc.identifier.citedreferenceGonzàlez‐Meler MA, Ribas‐Carbo M, Giles L, Siedow JN ( 1999 ) The effect of growth and measurement temperature on the activity of the alternative respiratory pathway. Plant Physiol 120: 765 – 772en_US
dc.identifier.citedreferenceGuy RD, Vanlerberghe GC ( 2005 ) Partitioning of respiratory electrons in the dark in leaves of transgenic tobacco with modified levels of alternative oxidase. Physiol Plant 125: 171 – 180en_US
dc.identifier.citedreferenceHara M, Terashima S, Fukaya T, Kuboi T ( 2003 ) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217: 290 – 298en_US
dc.identifier.citedreferenceHoagland DR, Arnon DI ( 1950 ) The water‐culture method for growing plants without soil. Calif Agric Exp Sta Circ 347en_US
dc.identifier.citedreferenceIto Y, Saisho D, Nakazono M, Tsutsumi N, Hirai A ( 1997 ) Transcript levels of tandem‐arranged alternative oxidase genes in rice are increased by low temperature. Gene 203: 121 – 129en_US
dc.identifier.citedreferenceJones MG ( 1981 ) Enzymic assay for starch and glycogen. Tech Carbohyd Metab 303: 1 – 13en_US
dc.identifier.citedreferenceKuzmin EV, Karpova OV, Elthon TE, Newton KJ ( 2004 ) Mitochondrial respiratory deficiencies signal up‐regulation of genes for heat shock proteins. J Biol Chem 279: 20672 – 20677en_US
dc.identifier.citedreferenceLambers H ( 1982 ) Cyanide‐resistant respiration: a non‐phosphorylating electron transport pathway acting as an energy overflow. Physiol Plant 55: 478 – 485en_US
dc.identifier.citedreferenceMacFarlane C, Hansen LD, Florez‐Sarasa I, Ribas‐Carbo M ( 2009 ) Plant mitochondria electron partitioning is independent of short‐term temperature changes. Plant Cell Environ 32: 585 – 591en_US
dc.identifier.citedreferenceMaruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi‐Shinozaki K ( 2009 ) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150: 1972 – 1980en_US
dc.identifier.citedreferenceMaxwell DP, Wang Y, McIntosh L ( 1999 ) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96: 8271 – 8276en_US
dc.identifier.citedreferenceMillar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CTG, Theodoulou FL, Foyer CH ( 2003 ) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133: 443 – 447en_US
dc.identifier.citedreferenceMiller RE, Grant NM, Giles L, Ribas‐Carbo M, Berry JA, Watling JR, Robinson SA ( 2011 ) In the heat of the night – alternative pathway respiration drives thermogenesis in Philodendron bipinnatifidum. New Phytol 189: 1013 – 1026. doi: 10.1111/j.1469‐8137.2010.03547.xen_US
dc.identifier.citedreferenceMizuno N, Sugie A, Kobayashi F, Takumi S ( 2008 ) Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat. J Plant Physiol 165: 462 – 467en_US
dc.identifier.citedreferenceMøller IM ( 2001 ) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52: 561 – 591en_US
dc.identifier.citedreferenceMøller IM, Jensen PE, Hansson A ( 2007 ) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58: 459 – 481en_US
dc.identifier.citedreferenceNoctor G, Dutilleul C, De Paepe R, Foyer CH ( 2004 ) Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism. J Exp Bot 55: 49 – 57en_US
dc.identifier.citedreferenceNoctor G, De Paepe R, Foyer CH ( 2007 ) Mitochondrial redox biology and homeostasis in plants. Trend Plant Sci 12: 125 – 134en_US
dc.identifier.citedreferenceNoguchi K, Terashima I ( 2006 ) Responses of spinach leaf mitochondria to low N availability. Plant Cell Environ 29: 710 – 719en_US
dc.identifier.citedreferenceNoguchi K, Yoshida K ( 2008 ) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8: 87 – 99en_US
dc.identifier.citedreferencePasqualini S, Paolocci F, Borgogni A, Morettini R, Ederli L ( 2007 ) The overexpression of an alternative oxidase gene triggers ozone sensitivity in tobacco plants. Plant Cell Environ 30: 1545 – 1556en_US
dc.identifier.citedreferencePopov VN, Simonian RA, Skulachev VP, Starkov AA ( 1997 ) Inhibition of the alternative oxidase stimulates H 2 O 2 production in plant mitochondria. FEBS Lett 415: 87 – 90en_US
dc.identifier.citedreferencePurvis AC, Shewfelt RL ( 1993 ) Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol Plant 88: 712 – 718en_US
dc.identifier.citedreferenceQueval G, Noctor G ( 2007 ) A plate reader method for the measurement of NAD, NADP, glutathione and ascorbate in tissue extracts. Application to redox profiling during Arabidopsis rosette development. Anal Biochem 363: 58 – 69en_US
dc.identifier.citedreferenceRaghavendra AS, Padmasree K ( 2003 ) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8: 546 – 553en_US
dc.identifier.citedreferenceRibas‐Carbo M, Aroca R, Gonzàlez‐Meler MA, Irigoyen JJ, Sánchez‐Díaz M ( 2000 ) The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity. Plant Physiol 122: 199 – 204en_US
dc.identifier.citedreferenceRizhsky L, Hallak‐Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inze D, Mittler R ( 2002 ) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32: 329 – 342en_US
dc.identifier.citedreferenceRobson CA, Vanlerberghe GC ( 2002 ) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria‐dependent and ‐independent pathways of programmed cell death. Plant Physiol 129: 1908 – 1920en_US
dc.identifier.citedreferenceSaisho D, Nakazono M, Lee K‐H, Tsutsumi N, Akita S, Hirai A ( 2001 ) The gene for alternative oxidase‐2 ( AOX2 ) from Arabidopsis thaliana consists of five exons unlike other AOX genes and is transcribed at an early stage during germination. Genes Genet Syst 76: 89 – 97en_US
dc.identifier.citedreferenceSearle SY, Thomas S, Griffin KL, Horton T, Kornfeld A, Yakir D, Hurry V, Turnbull MH ( 2010 ) Leaf respiration and alternative oxidase in field‐grown alpine grasses respond to natural changes in temperature and light. New Phytol 189: 1027 – 1039en_US
dc.identifier.citedreferenceShulaev V, Oliver DJ ( 2006 ) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141: 367 – 372en_US
dc.identifier.citedreferenceSieger SM, Kristensen BK, Robson CA, Amirsadeghi S, Eng EWY, Abdel‐Mesih A, Møller IM, Vanlerberghe GC ( 2005 ) The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells. J Exp Bot 56: 1499 – 1515en_US
dc.identifier.citedreferenceSimons BH, Lambers H ( 1999 ) The alternative oxidase: is it a respiratory pathway allowing a plant to cope with stress? In: Lerner HR (ed) Plant Responses to Environmental Stress: From Phytohormones to Gene Reorganization. Marcel Dekker Inc, New York, pp 265 – 286en_US
dc.identifier.citedreferenceStitt M, Lilley RM, Gerhardt R, Heldt HW ( 1989 ) Metabolite levels in specific cells and subcellular compartments of plant leaves. Meth Enzymol 174: 518 – 552en_US
dc.identifier.citedreferenceStrodtkötter I, Padmasree K, Dinakar C, Speth B, Niazi PS, Wojtera J, Voss I, Do PT, Nunes‐Nesi A, Fernie AR, Linke V, Raghavendra AS, Scheibe R ( 2009 ) Induction of the AOX1D isoform of alternative oxidase in A. thaliana T‐DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with antimycin A. Mol Plant 2: 284 – 297en_US
dc.identifier.citedreferenceSugie A, Naydenov N, Mizuno N, Nakamura C, Takumi S ( 2006 ) Overexpression of wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet Syst 81: 349 – 354en_US
dc.identifier.citedreferenceSuzuki N, Mittler R ( 2006 ) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126: 45 – 51en_US
dc.identifier.citedreferenceTaylor NL, Day DA, Millar AH ( 2002 ) Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem 277: 42663 – 42668en_US
dc.identifier.citedreferenceUmbach AL, Lacey EP, Richter SJ ( 2009 ) Temperature‐sensitive alternative oxidase protein content and its relationship to floral reflectance in natural Plantago lanceolata populations. New Phytol 181: 662 – 671en_US
dc.identifier.citedreferenceUrano K, Kurihara Y, Seki M, Shinozaki K ( 2010 ) “Omics” analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13: 132 – 138en_US
dc.identifier.citedreferenceUsadel B, Bläsing OE, Gibon Y, Poree F, Höhne M, Günter M, Trethewey R, Kamlage B, Poorter H, Stitt M ( 2008 ) Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non‐freezing range. Plant Cell Environ 31: 518 – 547en_US
dc.identifier.citedreferenceVan Aken O, Giraud E, Clifton R, Whelan J ( 2009 ) Alternative oxidase: a target and regulator of stress responses. Physiol Plant 137: 354 – 361en_US
dc.identifier.citedreferenceVanessa DRF, Angela PT, Mariana CO, Pio C ( 2008 ) RNA isolation method for polysaccharide rich algae: agar producing Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 20: 9 – 12en_US
dc.identifier.citedreferenceVanlerberghe GC, McIntosh L ( 1992 ) Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol 100: 115 – 119en_US
dc.identifier.citedreferenceVanlerberghe GC, McIntosh L ( 1994 ) Mitochondrial electron transport regulation of nuclear gene expression: studies with the alternative oxidase gene of tobacco. Plant Physiol 105: 867 – 874en_US
dc.identifier.citedreferenceVanlerberghe GC, Day DA, Wiskich JT, Vanlerberghe AE, McIntosh L ( 1995 ) Alternative oxidase activity in tobacco leaf mitochondria: dependence on tri‐carboxylic acid cycle‐mediated redox regulation and pyruvate activation. Plant Physiol 109: 353 – 361en_US
dc.identifier.citedreferenceVanlerberghe GC, McIntosh L, Yip JYH ( 1998 ) Molecular localization of a redox‐modulated process regulating plant mitochondrial electron transport. Plant Cell 10: 1551 – 1560en_US
dc.identifier.citedreferenceVanlerberghe GC, Cvetkovska M, Wang J ( 2009 ) Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? Physiol Plant 137: 392 – 406en_US
dc.identifier.citedreferenceWatanabe CK, Hachiya T, Terashima I, Noguchi K ( 2008 ) The lack of alternative oxidase at low temperature leads to a disruption of the balance in carbon and nitrogen metabolism, and to an up‐regulation of antioxidant defense systems in Arabidopsis thaliana leaves. Plant Cell Environ 31: 1190 – 1202en_US
dc.identifier.citedreferenceYabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S ( 2002 ) Thylakoid membrane‐bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo‐oxidative stress. Plant J 32: 915 – 925en_US
dc.identifier.citedreferenceYoshida K, Terashima I, Noguchi K ( 2007 ) Up‐regulation of mitochondrial alternative oxidase concomitant with chloroplast over‐reduction by excess light. Plant Cell Physiol 48: 606 – 614en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.