Show simple item record

Rate dependencies and energy absorption characteristics of nanoreinforced, biofiber, and microcellular polymer composites

dc.contributor.authorArgento, Alanen_US
dc.contributor.authorKim, Wonsuken_US
dc.contributor.authorLee, Ellen C.en_US
dc.contributor.authorHarris, Angela M.en_US
dc.contributor.authorMielewski, Deborah F.en_US
dc.date.accessioned2011-11-10T15:38:27Z
dc.date.available2012-11-02T18:56:48Zen_US
dc.date.issued2011-09en_US
dc.identifier.citationArgento, Alan; Kim, Wonsuk; Lee, Ellen C.; Harris, Angela M.; Mielewski, Deborah F. (2011). "Rate dependencies and energy absorption characteristics of nanoreinforced, biofiber, and microcellular polymer composites." Polymer Composites 32(9): 1423-1429. <http://hdl.handle.net/2027.42/87107>en_US
dc.identifier.issn0272-8397en_US
dc.identifier.issn1548-0569en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87107
dc.description.abstractThe effects of loading rate on bio‐, nano‐, and microcellular composite systems have been studied. Fiber–resin systems have been manufactured and dynamically tested at various speeds to assess their strain‐rate dependencies (rate hardening) and energy‐dissipation characteristics compared to conventional materials. The following composite systems have been fabricated and studied: polypropylene/sisal fiber biocomposite, hemp/vinyl ester biocomposite, thermoplastic olefin/nanoclay composite, microcellular polypropylene/sisal fiber biocomposite, and microcellular thermoplastic olefin/nanoclay composite. It has been determined that the biocomposite systems studied possess unique energy dissipation characteristics and muted rate dependence, while the nanocomposite system did not. In addition, microcellular foaming of these materials further enhanced the effects. Though the exact mechanisms at play are not fully understood at this point, it has been found that in addition to the microcellular voids, the anatomical vasculature of the natural fibers may play a role in energy dissipation processes in these hybrid materials. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineersen_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleRate dependencies and energy absorption characteristics of nanoreinforced, biofiber, and microcellular polymer compositesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, The University of Michigan‐Dearborn, Dearborn, Michigan 48128en_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, The University of Michigan‐Dearborn, Dearborn, Michigan 48128en_US
dc.contributor.affiliationotherMaterials Research and Advanced Engineering Department, Research and Innovation Center, Ford Motor Company, Dearborn, Michigan 48124en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87107/1/21169_ftp.pdf
dc.identifier.doi10.1002/pc.21169en_US
dc.identifier.sourcePolymer Compositesen_US
dc.identifier.citedreferenceW.D. Brouwer, SAMPE J., 36, 18 ( 2000 ).en_US
dc.identifier.citedreferenceE.S. De Medeiros, J.A.M. Agnelli, K. Joseph, L.H. De Carvalho, and L.H.C. Mattoso, Polym. Compos., 26, 1 ( 2005 ).en_US
dc.identifier.citedreferenceM. Hughes, C.A.S. Hill, and J.R.B. Hague, J. Mater. Sci., 37, 4669 ( 2002 ).en_US
dc.identifier.citedreferenceS. Wong, R.A. Shanks, and A. Hodzic, Macromol. Mater. Eng., 289, 447 ( 2004 ).en_US
dc.identifier.citedreferenceH. Cabral, M. Cisneros, J.M. Kenny, A. Vazquez, and C.R. Bernal, J. Compos. Mater., 39, 51 ( 2005 ).en_US
dc.identifier.citedreferenceE. Rodriguez, R. Petrucci, D. Puglia, J.M. Kenny, and A. Vazquez, J. Compos. Mater., 39, 265 ( 2005 ).en_US
dc.identifier.citedreferenceI. Taha and G. Ziegmann, J. Compos. Mater., 40, 1933 ( 2006 ).en_US
dc.identifier.citedreferenceL. Onal and Y. Karaduman, J. Compos. Mater., 43, 1751 ( 2009 ).en_US
dc.identifier.citedreferenceJ. Biagiotti, S. Fiori, L. Torre, M.A. Lopez‐Manchado, and J.M. Kenny, Polym. Compos., 25, 26 ( 2004 ).en_US
dc.identifier.citedreferenceP.‐O. Hagstrand and K. Oksman, Polym. Compos., 22, 568 ( 2001 ).en_US
dc.identifier.citedreferenceV.N. Hristov, S. Vasileva, M. Krumova, R. Lach, and G.H. Michler, Polym. Compos., 25, 521 ( 2004 ).en_US
dc.identifier.citedreferenceA. Keller, Compos. Sci. Technol., 63, 1307 ( 2003 ).en_US
dc.identifier.citedreferenceM.A. Khan, C. Kopp, and G. Hinrichsen, J. Reinforce. Plast. Compos., 20, 1414 ( 2001 ).en_US
dc.identifier.citedreferenceL.Y. Mwaikambo and M.P. Ansell, J. Appl. Polym. Sci., 84, 2222 ( 2002 ).en_US
dc.identifier.citedreferenceM. Pervaiz and M.M. Sain, Macromol. Mater. Eng., 288, 553 ( 2003 ).en_US
dc.identifier.citedreferenceJ. George, S. Thomas, and S.S. Bhagawan, J. Thermoplast. Compos. Mater., 12, 443 ( 1999 ).en_US
dc.identifier.citedreferenceM.M. Al‐Mousawi, S.R. Reid, and W.F. Deans, J. Mech. Eng. Sci., 211, 273 ( 1997 ).en_US
dc.identifier.citedreferenceT. Nicholas, Exp. Mech., 21, 177 ( 1981 ).en_US
dc.identifier.citedreferenceI.M. Low, M. Mcgrath, D. Lawrence, P. Schmidt, J. Lane, B.A. Latella, and K.S. Sim, Compos. A Appl. Sci. Manufact., 38, 963 ( 2007 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.