Show simple item record

Mechanisms of baryon loss for dark satellites in cosmological smoothed particle hydrodynamics simulations

dc.contributor.authorNickerson, S.en_US
dc.contributor.authorStinson, Greg C.en_US
dc.contributor.authorCouchman, H. M. P.en_US
dc.contributor.authorBailin, Jeremyen_US
dc.contributor.authorWadsley, Jamesen_US
dc.date.accessioned2011-11-10T15:38:33Z
dc.date.available2012-09-04T15:27:52Zen_US
dc.date.issued2011-07-21en_US
dc.identifier.citationNickerson, S.; Stinson, G.; Couchman, H. M. P.; Bailin, J.; Wadsley, J. (2011). "Mechanisms of baryon loss for dark satellites in cosmological smoothed particle hydrodynamics simulations." Monthly Notices of the Royal Astronomical Society 415(1). <http://hdl.handle.net/2027.42/87111>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87111
dc.description.abstractWe present a study of satellites in orbit around a high‐resolution, smoothed particle hydrodynamics (SPH) galaxy simulated in a cosmological context. The simulated galaxy is approximately of the same mass as the Milky Way. The cumulative number of luminous satellites at z = 0 is similar to the observed system of satellites orbiting the Milky Way although an analysis of the satellite mass function reveals an order of magnitude more dark satellites than luminous satellites. Some of the dark subhaloes are more massive than some of the luminous subhaloes at z = 0. What separates luminous and dark subhaloes is not their mass at z = 0, but the maximum mass the subhaloes ever achieve. We study the effect of four mass‐loss mechanisms on the subhaloes: ultraviolet (UV) ionizing radiation, ram‐pressure stripping, tidal stripping and stellar feedback, and compare the impact of each of these four mechanisms on the satellites. In the lowest mass subhaloes, UV is responsible for the majority of the baryonic mass‐loss. Ram‐pressure stripping removes whatever mass remains from the low‐mass satellites. More massive subhaloes have deeper potential wells and retain more mass during reionization. However, as satellites pass near the centre of the main halo, tidal forces cause significant mass‐loss from satellites of all masses. Satellites that are tidally stripped from the outside can account for the luminous satellites that are of lower mass than some of the dark satellites. Stellar feedback has the greatest impact on medium‐mass satellites that had formed stars, but lost all their gas by z = 0. Our results demonstrate that the missing‐satellite problem is not an intractable issue with the cold dark matter cosmology, but is rather a manifestation of baryonic processes.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMethods: Numericalen_US
dc.subject.otherGalaxies: Dwarfen_US
dc.subject.otherGalaxies: Evolutionen_US
dc.subject.otherCosmology: Theoryen_US
dc.titleMechanisms of baryon loss for dark satellites in cosmological smoothed particle hydrodynamics simulationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAstronomy Department, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109‐1042, USAen_US
dc.contributor.affiliationotherDepartment of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canadaen_US
dc.contributor.affiliationotherInstitute for Theoretical Physics, University of Zürich, Winterthurerstrasse 190, CH‐8057 Zürich, Switzerlanden_US
dc.contributor.affiliationotherJeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HEen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87111/1/j.1365-2966.2011.18700.x.pdf
dc.identifier.doi10.1111/j.1365-2966.2011.18700.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceAgertz O. et al., 2007, MNRAS, 380, 963en_US
dc.identifier.citedreferenceBelokurov V. et al., 2007, ApJ, 654, 897en_US
dc.identifier.citedreferenceBlumenthal G. R., Faber S. M., Primack J. R., Rees M. J., 1984, Nat, 311, 517en_US
dc.identifier.citedreferenceBullock J. S., Kravtsov A. V., Weinberg D. H., 2000, ApJ, 539, 517en_US
dc.identifier.citedreferenceChristensen C. R., Quinn T., Stinson G., Bellovary J., Wadsley J., 2010, ApJ, 717, 121en_US
dc.identifier.citedreferenceDalal N., Kochanek C. S., 2002, ApJ, 572, 25en_US
dc.identifier.citedreferenceDalcanton J. J., Hogan C. J., 2001, ApJ, 561, 35en_US
dc.identifier.citedreferenceDalla Vecchia C., Schaye J., 2008, MNRAS, 387, 1431en_US
dc.identifier.citedreferenceDavis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371en_US
dc.identifier.citedreferenceDekel A., Silk J., 1986, ApJ, 303, 39en_US
dc.identifier.citedreferenceDekel A., Woo J., 2003, MNRAS, 344, 1131en_US
dc.identifier.citedreferenceEfstathiou G., 1992, MNRAS, 256, 43pen_US
dc.identifier.citedreferenceFerland G. J., Korista K. T., Verner D. A., Ferguson J. W., Kingdon J. B., Verner E. M., 1998, PASP, 110, 761en_US
dc.identifier.citedreferenceGeha M., Blanton M. R., Masjedi M., West A. A., 2006, ApJ, 653, 240en_US
dc.identifier.citedreferenceGovernato F., Willman B., Mayer L., Brooks A., Stinson G., Valenzuela O., Wadsley J., Quinn T., 2007, MNRAS, 374, 1479en_US
dc.identifier.citedreferenceGramann M., 1988, MNRAS, 234, 569en_US
dc.identifier.citedreferenceGrebel E. K., Gallagher J. S., III, Harbeck D., 2003, AJ, 125, 1926en_US
dc.identifier.citedreferenceGunn J. E., Gott J. R., III, 1972, ApJ, 176, 1en_US
dc.identifier.citedreferenceGuo Q., White S., Li C., Boylan‐Kolchin M., 2010, MNRAS, 404, 1111en_US
dc.identifier.citedreferenceGuo Q. et al., 2011, MNRAS, 413, 101en_US
dc.identifier.citedreferenceHaardt F., Madau P., 1996, ApJ, 461, 20en_US
dc.identifier.citedreferenceHayashi E., Navarro J. F., Taylor J. E., Stadel J., Quinn T., 2003, ApJ, 584, 541en_US
dc.identifier.citedreferenceKennicutt R. C., 1998, ApJ, 498, 541en_US
dc.identifier.citedreferenceKlimentowski J., Łokas E. L., Knebe A., Gottlöber S., Martinez‐Vaquero L. A., Yepes G., Hoffman Y., 2010, MNRAS, 402, 1899en_US
dc.identifier.citedreferenceKlypin A., Kravtsov A. V., Valenzuela O., Prada F., 1999, ApJ, 522, 82en_US
dc.identifier.citedreferenceKnebe A., Libeskind N. I., Knollmann S. R., Martinez‐Vaquero L. A., Yepes G., Gottlöber S., Hoffman Y., 2010, MNRAS, 1863en_US
dc.identifier.citedreferenceKnollmann S. R., Knebe A., 2009, ApJS, 182, 608en_US
dc.identifier.citedreferenceKoposov S. et al., 2008, ApJ, 686, 279en_US
dc.identifier.citedreferenceKoposov S. E., Yoo J., Rix H., Weinberg D. H., Macciò A. V., Escudé J. M., 2009, ApJ, 696, 2179en_US
dc.identifier.citedreferenceKravtsov A., 2010, Advances Astron., 2010, 8en_US
dc.identifier.citedreferenceKravtsov A. V., Gnedin O. Y., Klypin A. A., 2004, ApJ, 609, 482en_US
dc.identifier.citedreferenceKroupa P., Tout C. A., Gilmore G., 1993, MNRAS, 262, 545en_US
dc.identifier.citedreferenceLeitherer C. et al., 1999, ApJS, 123, 3en_US
dc.identifier.citedreferenceLi Y., Helmi A., De Lucia G., Stoehr F., 2009, MNRAS, 397, L87en_US
dc.identifier.citedreferenceLibeskind N. I., Cole S., Frenk C. S., Okamoto T., Jenkins A., 2007, MNRAS, 374, 16en_US
dc.identifier.citedreferenceLisenfeld U., Ferrara A., 1998, ApJ, 496, 145en_US
dc.identifier.citedreferenceMac Low M., Ferrara A., 1999, ApJ, 513, 142en_US
dc.identifier.citedreferenceMacciò A. V., Kang X., Moore B., 2009, ApJ, 692, L109en_US
dc.identifier.citedreferenceMcGaugh S. S., Wolf J., 2010, ApJ, 722, 248en_US
dc.identifier.citedreferenceMcKee C. F., Ostriker J. P., 1977, ApJ, 218, 148en_US
dc.identifier.citedreferenceMao S., Jing Y., Ostriker J. P., Weller J., 2004, ApJ, 604, L5en_US
dc.identifier.citedreferenceMarigo P., Girardi L., Bressan A., Groenewegen M. A. T., Silva L., Granato G. L., 2008, A&A, 482, 883en_US
dc.identifier.citedreferenceMateo M. L., 1998, ARA&A, 36, 435en_US
dc.identifier.citedreferenceMayer L., Mastropietro C., Wadsley J., Stadel J., Moore B., 2006, MNRAS, 369, 1021en_US
dc.identifier.citedreferenceMoore B., Ghigna S., Governato F., Lake G., Quinn T., Stadel J., Tozzi P., 1999, ApJ, 524, L19en_US
dc.identifier.citedreferenceOkamoto T., Frenk C. S., 2009, MNRAS, 399, L174en_US
dc.identifier.citedreferenceOkamoto T., Frenk C. S., Jenkins A., Theuns T., 2010, MNRAS, 406, 208en_US
dc.identifier.citedreferencePeebles P. J., Ratra B., 2003, Rev. Modern Phys., 75, 559en_US
dc.identifier.citedreferencePeñarrubia J., McConnachie A. W., Navarro J. F., 2008, ApJ, 672, 904en_US
dc.identifier.citedreferencePress W. H., Schechter P., 1974, ApJ, 187, 425en_US
dc.identifier.citedreferenceQuinn T., Katz N., Efstathiou G., 1996, MNRAS, 278, L49en_US
dc.identifier.citedreferenceRaiteri C. M., Villata M., Navarro J. F., 1996, A&A, 315, 105en_US
dc.identifier.citedreferenceRead J. I., Pontzen A. P., Viel M., 2006, MNRAS, 371, 885en_US
dc.identifier.citedreferenceShen S., Wadsley J., Stinson G., 2010, MNRAS, 407, 1581en_US
dc.identifier.citedreferenceSimon J. D., Geha M., 2007, ApJ, 670, 313en_US
dc.identifier.citedreferenceSkillman E. D., 2007, in Saviane I., Ivanov V. D., Borissova J., eds, Groups of Galaxies in the Nearby Universe. Springer Verlag, Berlin, p. 21en_US
dc.identifier.citedreferenceSpergel D. N., Steinhardt P. J., 2000, Phys. Rev. Lett., 84, 3760en_US
dc.identifier.citedreferenceSpergel D. N. et al., 2007, ApJS, 170, 377en_US
dc.identifier.citedreferenceStinson G., Seth A., Katz N., Wadsley J., Governato F., Quinn T., 2006, MNRAS, 373, 1074en_US
dc.identifier.citedreferenceStinson G. S., Bailin J., Couchman H., Wadsley J., Shen S., Nickerson S., Brook C., Quinn T., 2010, MNRAS, 408, 812en_US
dc.identifier.citedreferenceStrigari L. E., Bullock J. S., Kaplinghat M., Diemand J., Kuhlen M., Madau P., 2007, ApJ, 669, 676en_US
dc.identifier.citedreferenceTollerud E. J., Bullock J. S., Strigari L. E., Willman B., 2008, ApJ, 688, 277en_US
dc.identifier.citedreferenceTollerud E. J., Barton E. J., van Zee L., Cooke J., 2009, BAAS, 41, 485en_US
dc.identifier.citedreferenceWadepuhl M., Springel V., 2011, MNRAS, 410, 1975en_US
dc.identifier.citedreferenceWadsley J. W., Stadel J., Quinn T., 2004, New Astron., 9, 137en_US
dc.identifier.citedreferenceWhite S. D. M., Rees M. J., 1978, MNRAS, 183, 341en_US
dc.identifier.citedreferenceWillman B. et al., 2005, ApJ, 626, L85en_US
dc.identifier.citedreferenceZentner A. R., Bullock J. S., 2003, ApJ, 598, 49en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.