A fundamental model of wax deposition in subsea oil pipelines
dc.contributor.author | Huang, Zhenyu | en_US |
dc.contributor.author | Lee, Hyun Su | en_US |
dc.contributor.author | Senra, Michael John | en_US |
dc.contributor.author | Scott Fogler, H. | en_US |
dc.date.accessioned | 2011-11-10T15:38:40Z | |
dc.date.available | 2013-01-02T16:32:35Z | en_US |
dc.date.issued | 2011-11 | en_US |
dc.identifier.citation | Huang, Zhenyu; Lee, Hyun Su; Senra, Michael; Scott Fogler, H. (2011). "A fundamental model of wax deposition in subsea oil pipelines." AIChE Journal 57(11): 2955-2964. <http://hdl.handle.net/2027.42/87116> | en_US |
dc.identifier.issn | 0001-1541 | en_US |
dc.identifier.issn | 1547-5905 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/87116 | |
dc.description.abstract | Wax deposition in subsea pipelines is a significant economic issue in the petroleum industry. A mathematical model has been developed to predict the increase in both the deposit thickness and the wax fraction of the deposit using a fundamental analysis of the heat and mass transfer for laminar and turbulent flow conditions. It was found that the precipitation of wax in the oil is a competing phenomenon with deposition. Two existing approaches consider either no precipitation (the independent heat and mass transfer model) or instantaneous precipitation (the solubility model) and result in either an overprediction or an underprediction of deposit thickness. By accounting for the kinetics of wax precipitation of wax in the oil (the kinetic model), accurate predictions for wax deposition for both lab‐scale and pilot‐scale flow‐loop experiments with three different oils were achieved. Furthermore, this kinetic model for wax precipitation in the oil was used to compare field‐scale deposition predictions for different oils. © 2011 American Institute of Chemical Engineers AIChE J, 2011 | en_US |
dc.publisher | Wiley Subscription Services, Inc., A Wiley Company | en_US |
dc.subject.other | Petroleum | en_US |
dc.subject.other | Diffusion (Mass Transfer | en_US |
dc.subject.other | Heat Transfer) | en_US |
dc.subject.other | Wax Deposition | en_US |
dc.subject.other | Modeling | en_US |
dc.title | A fundamental model of wax deposition in subsea oil pipelines | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Chemical Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Dept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 | en_US |
dc.contributor.affiliationum | Dept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 | en_US |
dc.contributor.affiliationum | Dept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 | en_US |
dc.contributor.affiliationum | Dept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 | en_US |
dc.contributor.affiliationother | Production Assurance Technology, ConocoPhillips, Bartlesville, OK 74004 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/87116/1/12517_ftp.pdf | |
dc.identifier.doi | 10.1002/aic.12517 | en_US |
dc.identifier.source | AIChE Journal | en_US |
dc.identifier.citedreference | Gluyas JG, Underhill JR. United Kingdom oil and gas fields. Geol Soc. 2003; 20: 327 – 333. | en_US |
dc.identifier.citedreference | Lee HS, Singh P, Thomason WH, Fogler HS. Waxy oil gel breaking mechanisms: adhesive versus cohesive failure. Energy Fuels. 2007; 22: 480 – 487. | en_US |
dc.identifier.citedreference | Fung G, Backhaus WP, McDaniel S, Erdogmus M. To pig or not to pig: the marlin experience with stuck pig. In: Proceedings of Offshore Technology Conference, Houston, USA, 2006. | en_US |
dc.identifier.citedreference | Singh P, Fogler HS. Fused chemical reactions: the use of dispersion to delay reaction time in tubular reactors. Ind Eng Chem Res. 1998; 37: 2203 – 2207. | en_US |
dc.identifier.citedreference | Nguyen AD, Fogler HS, Sumaeth C. Fused chemical reactions. II. Encapsulation: application to remediation of paraffin plugged pipelines. Ind Eng Chem Res. 2001; 40: 5058 – 5065. | en_US |
dc.identifier.citedreference | Bern PA, Withers VR, Cairns JR. Wax deposition in crude oil pipelines. In: Proceedings of European Offshore Petroleum Conference and Exhibition, London, UK, 1980. | en_US |
dc.identifier.citedreference | Burger ED, Perkins TK, Striegler JH. Studies of wax deposition in the trans Alaska pipeline. J Petrol Technol. 1981; 33: 1075 – 1086. | en_US |
dc.identifier.citedreference | Majeed A, Bringedal B, Overa S. Model calculates wax deposition for N. Sea oils. Oil Gas J. 1990; 88: 63 – 69. | en_US |
dc.identifier.citedreference | Singh P, Venkatesan R, Fogler HS, Nagarajan NR. Formation and aging of incipient thin film wax‐oil gels. AIChE J. 2000; 46: 1059 – 1074. | en_US |
dc.identifier.citedreference | Singh P, Venkatesan R, Fogler HS, Nagarajan NR. Morphological evolution of thick wax deposits during aging. AIChE J. 2001; 47: 6 – 18. | en_US |
dc.identifier.citedreference | Venkatesan R, Fogler HS. Comments on analogies for correlated heat and mass transfer in turbulent flow. AIChE J. 2004; 50: 1623 – 1626. | en_US |
dc.identifier.citedreference | Venkatesan R. The deposition and rheology of organic gels. PhD Thesis, Dept. of Chemical Engineering, University of Michigan, 2004. | en_US |
dc.identifier.citedreference | Seider EN, Tate CE. Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem. 1936; 28: 1429 – 1435. | en_US |
dc.identifier.citedreference | Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Publ Eng. 1930; 2, 443 – 461. | en_US |
dc.identifier.citedreference | Geankoplis CJ. Transport Process and Separation Process Principles, 4th ed. Englewood Cliffs, NJ: Prentice Hall, 2003. | en_US |
dc.identifier.citedreference | Van Driest ER. On turbulent flow near a wall. J Aero Sci. 1956; 23: 1007 – 1011. | en_US |
dc.identifier.citedreference | Tanehill JC, Anderson DA, Pletcher RH. Computational Fluid Mechanics and Heat Transfer. Philadelphia, PA: Taylor and Francis, 1997. | en_US |
dc.identifier.citedreference | Fogler HS. Elements of Chemical Reaction Engineering, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2006. | en_US |
dc.identifier.citedreference | Marchisio DL, Barresi AA, Garbero M. Nucleation, growth and agglomeration in barium sulfate turbulent precipitation. AIChE J. 2002; 48: 2039 – 2050. | en_US |
dc.identifier.citedreference | Armenante PM, Kirwan DJ. Mass transfer to microparticles in agitated systems. Chem Eng Sci. 1989; 44: 2781 – 2796. | en_US |
dc.identifier.citedreference | Hayduk W, Minhas BS. Correlations for prediction of molecular diffusivities in liquids. Can J Chem Eng. 1982; 60: 295 – 299. | en_US |
dc.identifier.citedreference | Lee HS. Computational and rheological study of wax deposition and gelation in subsea pipelines. PhD thesis, University of Michigan, 2007. | en_US |
dc.identifier.citedreference | Cussler EL, Hughes SE, Ward WJ, Aris R. Barrier membranes. J Membr Sci. 1988; 38: 161 – 174. | en_US |
dc.identifier.citedreference | Hernandez OC. Investigation of single‐phase paraffin deposition characteristics. M.S. Thesis, University of Tulsa, 2002. | en_US |
dc.identifier.citedreference | Lund H. Investigation of paraffin deposition during single‐phase liquid flow in pipelines. M.S. Thesis, University of Tulsa, 1998. | en_US |
dc.identifier.citedreference | Han S, Huang Z, Senra M, Hoffmann R, Fogler HS. Method to determine the wax solubility curve from centrifugation and high temperature gas chromatography measurements. Energy Fuels. 2010; 24: 1753 – 1761. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.