Show simple item record

A fundamental model of wax deposition in subsea oil pipelines

dc.contributor.authorHuang, Zhenyuen_US
dc.contributor.authorLee, Hyun Suen_US
dc.contributor.authorSenra, Michael Johnen_US
dc.contributor.authorScott Fogler, H.en_US
dc.date.accessioned2011-11-10T15:38:40Z
dc.date.available2013-01-02T16:32:35Zen_US
dc.date.issued2011-11en_US
dc.identifier.citationHuang, Zhenyu; Lee, Hyun Su; Senra, Michael; Scott Fogler, H. (2011). "A fundamental model of wax deposition in subsea oil pipelines." AIChE Journal 57(11): 2955-2964. <http://hdl.handle.net/2027.42/87116>en_US
dc.identifier.issn0001-1541en_US
dc.identifier.issn1547-5905en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87116
dc.description.abstractWax deposition in subsea pipelines is a significant economic issue in the petroleum industry. A mathematical model has been developed to predict the increase in both the deposit thickness and the wax fraction of the deposit using a fundamental analysis of the heat and mass transfer for laminar and turbulent flow conditions. It was found that the precipitation of wax in the oil is a competing phenomenon with deposition. Two existing approaches consider either no precipitation (the independent heat and mass transfer model) or instantaneous precipitation (the solubility model) and result in either an overprediction or an underprediction of deposit thickness. By accounting for the kinetics of wax precipitation of wax in the oil (the kinetic model), accurate predictions for wax deposition for both lab‐scale and pilot‐scale flow‐loop experiments with three different oils were achieved. Furthermore, this kinetic model for wax precipitation in the oil was used to compare field‐scale deposition predictions for different oils. © 2011 American Institute of Chemical Engineers AIChE J, 2011en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherPetroleumen_US
dc.subject.otherDiffusion (Mass Transferen_US
dc.subject.otherHeat Transfer)en_US
dc.subject.otherWax Depositionen_US
dc.subject.otherModelingen_US
dc.titleA fundamental model of wax deposition in subsea oil pipelinesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDept. of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationotherProduction Assurance Technology, ConocoPhillips, Bartlesville, OK 74004en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87116/1/12517_ftp.pdf
dc.identifier.doi10.1002/aic.12517en_US
dc.identifier.sourceAIChE Journalen_US
dc.identifier.citedreferenceGluyas JG, Underhill JR. United Kingdom oil and gas fields. Geol Soc. 2003; 20: 327 – 333.en_US
dc.identifier.citedreferenceLee HS, Singh P, Thomason WH, Fogler HS. Waxy oil gel breaking mechanisms: adhesive versus cohesive failure. Energy Fuels. 2007; 22: 480 – 487.en_US
dc.identifier.citedreferenceFung G, Backhaus WP, McDaniel S, Erdogmus M. To pig or not to pig: the marlin experience with stuck pig. In: Proceedings of Offshore Technology Conference, Houston, USA, 2006.en_US
dc.identifier.citedreferenceSingh P, Fogler HS. Fused chemical reactions: the use of dispersion to delay reaction time in tubular reactors. Ind Eng Chem Res. 1998; 37: 2203 – 2207.en_US
dc.identifier.citedreferenceNguyen AD, Fogler HS, Sumaeth C. Fused chemical reactions. II. Encapsulation: application to remediation of paraffin plugged pipelines. Ind Eng Chem Res. 2001; 40: 5058 – 5065.en_US
dc.identifier.citedreferenceBern PA, Withers VR, Cairns JR. Wax deposition in crude oil pipelines. In: Proceedings of European Offshore Petroleum Conference and Exhibition, London, UK, 1980.en_US
dc.identifier.citedreferenceBurger ED, Perkins TK, Striegler JH. Studies of wax deposition in the trans Alaska pipeline. J Petrol Technol. 1981; 33: 1075 – 1086.en_US
dc.identifier.citedreferenceMajeed A, Bringedal B, Overa S. Model calculates wax deposition for N. Sea oils. Oil Gas J. 1990; 88: 63 – 69.en_US
dc.identifier.citedreferenceSingh P, Venkatesan R, Fogler HS, Nagarajan NR. Formation and aging of incipient thin film wax‐oil gels. AIChE J. 2000; 46: 1059 – 1074.en_US
dc.identifier.citedreferenceSingh P, Venkatesan R, Fogler HS, Nagarajan NR. Morphological evolution of thick wax deposits during aging. AIChE J. 2001; 47: 6 – 18.en_US
dc.identifier.citedreferenceVenkatesan R, Fogler HS. Comments on analogies for correlated heat and mass transfer in turbulent flow. AIChE J. 2004; 50: 1623 – 1626.en_US
dc.identifier.citedreferenceVenkatesan R. The deposition and rheology of organic gels. PhD Thesis, Dept. of Chemical Engineering, University of Michigan, 2004.en_US
dc.identifier.citedreferenceSeider EN, Tate CE. Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem. 1936; 28: 1429 – 1435.en_US
dc.identifier.citedreferenceDittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Publ Eng. 1930; 2, 443 – 461.en_US
dc.identifier.citedreferenceGeankoplis CJ. Transport Process and Separation Process Principles, 4th ed. Englewood Cliffs, NJ: Prentice Hall, 2003.en_US
dc.identifier.citedreferenceVan Driest ER. On turbulent flow near a wall. J Aero Sci. 1956; 23: 1007 – 1011.en_US
dc.identifier.citedreferenceTanehill JC, Anderson DA, Pletcher RH. Computational Fluid Mechanics and Heat Transfer. Philadelphia, PA: Taylor and Francis, 1997.en_US
dc.identifier.citedreferenceFogler HS. Elements of Chemical Reaction Engineering, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2006.en_US
dc.identifier.citedreferenceMarchisio DL, Barresi AA, Garbero M. Nucleation, growth and agglomeration in barium sulfate turbulent precipitation. AIChE J. 2002; 48: 2039 – 2050.en_US
dc.identifier.citedreferenceArmenante PM, Kirwan DJ. Mass transfer to microparticles in agitated systems. Chem Eng Sci. 1989; 44: 2781 – 2796.en_US
dc.identifier.citedreferenceHayduk W, Minhas BS. Correlations for prediction of molecular diffusivities in liquids. Can J Chem Eng. 1982; 60: 295 – 299.en_US
dc.identifier.citedreferenceLee HS. Computational and rheological study of wax deposition and gelation in subsea pipelines. PhD thesis, University of Michigan, 2007.en_US
dc.identifier.citedreferenceCussler EL, Hughes SE, Ward WJ, Aris R. Barrier membranes. J Membr Sci. 1988; 38: 161 – 174.en_US
dc.identifier.citedreferenceHernandez OC. Investigation of single‐phase paraffin deposition characteristics. M.S. Thesis, University of Tulsa, 2002.en_US
dc.identifier.citedreferenceLund H. Investigation of paraffin deposition during single‐phase liquid flow in pipelines. M.S. Thesis, University of Tulsa, 1998.en_US
dc.identifier.citedreferenceHan S, Huang Z, Senra M, Hoffmann R, Fogler HS. Method to determine the wax solubility curve from centrifugation and high temperature gas chromatography measurements. Energy Fuels. 2010; 24: 1753 – 1761.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.