Show simple item record

Phase behavior of TPGS–PEG400/1450 systems and their application to liquid formulation: A formulation platform approach

dc.contributor.authorLi, Jinjiangen_US
dc.contributor.authorYang, Beien_US
dc.contributor.authorLevons, Jaquanen_US
dc.contributor.authorPinnamaneni, Swathien_US
dc.contributor.authorRaghavan, Krishnaswamyen_US
dc.date.accessioned2011-11-10T15:39:01Z
dc.date.available2013-01-02T16:32:36Zen_US
dc.date.issued2011-11en_US
dc.identifier.citationLi, Jinjiang; Yang, Bei; Levons, Jaquan; Pinnamaneni, Swathi; Raghavan, Krishnaswamy (2011). "Phase behavior of TPGS–PEG400/1450 systems and their application to liquid formulation: A formulation platform approach." Journal of Pharmaceutical Sciences 100(11): 4907-4921. <http://hdl.handle.net/2027.42/87132>en_US
dc.identifier.issn0022-3549en_US
dc.identifier.issn1520-6017en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87132
dc.description.abstractVitamin E d ‐alpha‐tocopheryl polyethylene glycol succinate (TPGS) and polyethylene glycol are common excipients used in both preclinical and commercial formulations. In this paper, the phase diagrams of TPGS and polyethylene glycol 400 (PEG 400) in the presence of either water or ethanol were constructed. The effect of water and ethanol on the cloud point temperature of TPGS–PEG 400 mixtures was investigated. In general, the cloud point temperature was reduced by the presence of either water or ethanol in the formulation. However, water was more effective in lowering the cloud point temperature than ethanol. Similarly, the phase diagram of TPGS–PEG 1450 was constructed. The cloud point temperature was observed to decrease with increasing TPGS concentration. It was found that TPGS and PEG 1450 could form a single phase when TPGS concentration was above 75%, based on differential scanning calorimetry, and FT‐Raman analysis indicated that a vibration at 1330 cm –1 disappeared in the melted single phase. In addition, a systematic melting point depression was observed for the mixtures of TPGS–PEG 1450. In the presence of Ibuprofen, a model compound, the cloud point temperature was also reduced. Finally, the extended Flory–Huggins theory for polymer solution was used to analyze the entropic and enthalpic contributions of water and ethanol to the free energy of mixing. © 2011 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:4907–4921, 2011en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherPolymersen_US
dc.subject.otherPhysical Stabilityen_US
dc.subject.otherThermal Analysisen_US
dc.subject.otherPrecipitationen_US
dc.subject.otherFormulationen_US
dc.subject.otherRaman Spectroscopyen_US
dc.subject.otherSemi‐Solidsen_US
dc.subject.otherSurfactantsen_US
dc.subject.otherX‐Rayen_US
dc.subject.otherPowder Diffractometryen_US
dc.titlePhase behavior of TPGS–PEG400/1450 systems and their application to liquid formulation: A formulation platform approachen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDrug Product Science & Technology, Bristol–Myers Squibb Company, New Brunswick, New Jersey 08903en_US
dc.contributor.affiliationotherDrug Product Science & Technology, Bristol–Myers Squibb Company, New Brunswick, New Jersey 08903. Telephone: +732‐227‐6584; Fax: +732‐227‐3784en_US
dc.identifier.pmid21656767en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87132/1/22659_ftp.pdf
dc.identifier.doi10.1002/jps.22659en_US
dc.identifier.sourceJournal of Pharmaceutical Sciencesen_US
dc.identifier.citedreferenceComer JEA. 2003. High‐throughput measurement of log D and pK a. In Drug bioavailability: Estimation of solubility, permeability, absorption and bioavailability; Van de Waterbeemd H, Lennernas H, Artursson P, Eds. Weinheim, Germany: Wiley‐VCH, pp 21 – 45.en_US
dc.identifier.citedreferenceKerns EH, Di L. 2008. Drug‐like properties: Concepts, structure design and methods from ADME to toxicity optimization. San Diego, CA: Academic Press, pp 6 – 16.en_US
dc.identifier.citedreferenceAmidon GL, Lenernas H, Shah VP, Crison JR. 1995. A theoretical basis for a biopharmaceutical classification, the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12: 413 – 420.en_US
dc.identifier.citedreferenceGrove M, Mullertz A. 2007. Liquid self‐microemulsifying drug delivery systems. In Oral lipid‐based formulations: Enhancing the bioavailability of poorly water‐soluble drugs; Hauss D, Ed. New York: Infoma HealthCare, pp 107 – 127.en_US
dc.identifier.citedreferenceStrickley RG. 2004. Solubilizing excipients in oral and injectable formulations. Pharm Res 21: 201 – 230.en_US
dc.identifier.citedreferencePalepu NR, Bulusu BT. 2008. Solubilized formulation of docetaxel without tween 80, Patent US20080319048A1.en_US
dc.identifier.citedreferenceRubinfeld J, Gore AY, Joshi R, Shrotriya, R. 2000. Formulation for paclitaxel. Patent US006136846.en_US
dc.identifier.citedreferenceYu L, Bridgers A, Polli J, Vickers A, Long S, Roy, A, Winnike R, Coffin M. 1999. Vitamin E‐TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm Res 16: 1812 – 1817.en_US
dc.identifier.citedreferenceAbelaira S, Becher MP, Gel JF, Villagra MF, Vidal MNCD. 2008. Self‐emulsifying formulation of tipranavir for oral administration, Patent WO2008142090.en_US
dc.identifier.citedreferenceSheu MT, Wu AB, Lin KP, Shen CH, Ho HO. 2006. Effect of tocopheryl polyethylene glycol succinate on the percutaneous penetration of minoxidil from water/ethanol/polyethylene glycol 400 solutions. Drug Dev Ind Pharm 32: 595 – 607.en_US
dc.identifier.citedreferenceKhoo SM, Porter CJH, Charman WN. 2000. The formulation of halofantrine as either non‐solubilizing PEG 6000 or solubilizing lipid based solid dispersions: Physical stability and absolute bioavailability assessment. Int J Pharm 205: 65 – 78.en_US
dc.identifier.citedreferenceWohlfarth C. 2004. CRC handbook of thermodynamic data of aqueous polymer solutions, New York: CRC Press, pp 382, 383, 386.en_US
dc.identifier.citedreferenceBigi A, Comeli F. 2005. Excess molar enthalpies of binary mixtures containing ethylene glycols or poly(ethylene glycols) + ethyl alcohol at 308.15K and atmospheric pressure. Thermochim Acta 430: 191 – 195.en_US
dc.identifier.citedreferenceLakhanpal ML, Sharma SC, Krishan B, Parashar RN. 1976. Enthalpies of mixing of polyoxyethylene glycols in benzene, carbon tetrachloride, methyl alcohol & ethyl alcohol. Indian J Chem 14: 642 – 644.en_US
dc.identifier.citedreferenceSjöberg A, Karlström G. 1989. Temperature dependence of the phase equilibria for the system poly (ethylene glycol)/dextran/water. A theoretical and experimental study. Macromolecules 22: 1325 – 1330.en_US
dc.identifier.citedreferenceJung JG, Bae YC. 2010. Liquid–liquid equilibria of polymer solutions: Flory–Huggins with specific interaction. J Polym Sci B Polym Phys 48: 162 – 167.en_US
dc.identifier.citedreferenceKarlström G. 1985. A new model for upper and lower critical solution temperature in poly(ethylene oxide) solutions. J Phys Chem 89: 4962 – 4964.en_US
dc.identifier.citedreferenceShultz AR, Flory PJ. 1952. Phase equilibria in polymer–solvents systems. J Am Chem Soc 74: 4760 – 4767.en_US
dc.identifier.citedreferenceKamide K. 1990. Thermodynamics of polymer solutions: Phase equilibria and critical phenomena. Amsterdam, The Netherland: Elsevier, pp 10 – 233.en_US
dc.identifier.citedreferenceShirataki H, Kamide K. 1993. Phase equilibria of quasi‐ternary systems consisting of multicomponent polymers 1 and 2 in a single solvent II. Cloud point curve. Polym Int 32: 265 – 273.en_US
dc.identifier.citedreferenceSaraiva A, Persson O, Fredenslund A. 1993. An experimental investigation of cloud‐point curves for the poly(ethylene glycole)/water system at varying molecular weight distributions. Fluid Phase Equilib 91: 291 – 311.en_US
dc.identifier.citedreferenceLin‐Vien D, Colthup NB, Fateley WG, Grasselli JG. 1991. The handbook of infrared and raman characteristic frequencies of organic molecules. San Diego: Academic Press, pp 9 ‐ 28.en_US
dc.identifier.citedreferenceBlaha JJ, Rosasco GJ. 1981. Raman microprobe characterization of urea: n‐Paraffin inclusion compounds. J Raman Spectrosc 11: 75 – 80.en_US
dc.identifier.citedreferenceMatsuura H, Fukuhara K. 1986. Vibrational spectroscopic studies on conformation of poly(oxyethylene). II. Conformation–spectrum correlations. J Polym Sci B Polym Phys 24: 1383 – 1400.en_US
dc.identifier.citedreferenceFlory PJ. 1956. Principles of polymer chemistry. Ithaca, NY: Cornell University press, pp 495 – 540.en_US
dc.identifier.citedreferenceColeman MM, Graf JF, Painter PC. 1991. Specific interactions and the miscibility of polymer blends. Lancaster, Pennsylvania: Technomic Publishing Company, Inc., pp 49.en_US
dc.identifier.citedreferenceKamide K, Dobashi T. 2000. Physical chemistry of polymer solution. Amsterdam, The Netherlands: Elsevier, pp 50 – 93.en_US
dc.identifier.citedreferenceKlenin VJ. 1999. Thermodynamics of systems containing flexible‐chain polymers. Amsterdam, The Netherlands: Elsevier, pp 253 – 508.en_US
dc.identifier.citedreferenceKoningsveld R, Stockmayer WH, Nies E. 2001. Polymer phase diagrams: A textbook. New York: Oxford University Press, pp 117 – 136.en_US
dc.identifier.citedreferencePainter PC, Park Y, Coleman MM. 1989. Thermodynamics of hydrogen bonding in polymer blends. 1. The application of association model s. Macromolecules 22: 570 – 579.en_US
dc.identifier.citedreferencePainter PC, Park Y, Coleman MM. 1988. Hydrogen bonding in polymer blends. 2. Theory. Macromolecules 21: 66 – 72.en_US
dc.identifier.citedreferenceHanke E, Schulz U, Kaatze U. 2007. Molecular interactions in poly(ethylene glycol)–water mixtures at various temperatures: Density and isentropic compressibility study. Chem Phys Chem 8: 553 – 560.en_US
dc.identifier.citedreferenceHaynes CA, Beynon RA, King RS, Blanch HW, Prausnitz JM. 1989. Thermodynamic properties of aqueous polymer solutions: Poly(ethylene glycol)/dextran. J Phys Chem 93: 5612 – 5617.en_US
dc.identifier.citedreferenceHildebrand JH, Scott RL. 1964. The solubility of nonelectrolytes. New York: Dover Publications Inc., pp 198 – 209.en_US
dc.identifier.citedreferenceTompa H. 1956. Polymer solutions. New York: Academic Press, pp 174 – 232.en_US
dc.identifier.citedreferenceLipatov YS, Nesterov AE. 1997. Thermodynamics of polymer blends. Lancaster, Pennsylvania: Technomic Publication Inc., pp 81 – 226.en_US
dc.identifier.citedreferenceLipatov YS, Nesterov AE. 1997. Thermodynamics of polymer blends. Lancaster, Pennsylvania: Technomic Publication Inc., pp 114 – 118.en_US
dc.identifier.citedreferenceDerkaoui N, Said S, Grohens Y, Olier R, Privat M. 2007. PEG 400 novel phase description in water. J Colloid Interface Sci 305: 330 – 338.en_US
dc.identifier.citedreferenceWu S, Hopkins WK. 1999. Characteristics of D‐α‐tocopheryl PEG 1000 succinate for applications as an absorption enhancer in drug delivery systems. Pharm Technol 23: 52 – 68.en_US
dc.identifier.citedreferenceWunderlich B. 2005. Thermal analysis of polymeric materials. New York: Springer, pp 705 – 777.en_US
dc.identifier.citedreferenceSmith P, Pennings AJ. 1977. Eutectic solidification of the quasi binary system of isotactic polypropylene and pentaerythrityl tetrabromide. Polym Sci B Polym Phys 15: 523 – 540.en_US
dc.identifier.citedreferenceBalsara NP, Rappl TJ, Lefebvre AA. 2004. Does conventional nucleation occur during phase separation in polymer blends ? J Polym Sci B Polym Phys 42: 1793 – 1809.en_US
dc.identifier.citedreferenceHefford RJ. 1984. Polymer mixing in aqueous solution. Polymer 25: 979 – 984.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.