Show simple item record

Transforming energy instruction in middle school to support integrated understanding and future learning

dc.contributor.authorNordine, Jeffrey Carlen_US
dc.contributor.authorKrajcik, Joseph S.en_US
dc.contributor.authorFortus, Daviden_US
dc.date.accessioned2011-11-10T15:39:12Z
dc.date.available2012-09-04T15:28:00Zen_US
dc.date.issued2011-07en_US
dc.identifier.citationNordine, Jeffrey; Krajcik, Joseph; Fortus, David (2011). "Transforming energy instruction in middle school to support integrated understanding and future learning ." Science Education 95(4): 670-699. <http://hdl.handle.net/2027.42/87139>en_US
dc.identifier.issn0036-8326en_US
dc.identifier.issn1098-237Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87139
dc.description.abstractEnergy is a fundamental unifying concept of science, yet common approaches to energy instruction in middle school have shown little success with helping students develop their naïve ideas about energy into more sophisticated understandings that are useful for making sense of their experiences. While traditional energy instruction often focuses on simple calculations of energy in idealized systems, we developed a new middle school energy unit that focuses qualitatively on the energy transformations that occur in everyday, nonidealized, systems. In this article, we describe our approach to energy instruction and report the effects this approach had on students' energy conceptions, ability to perform on distal criterion‐referenced assessments, and preparation for future energy‐related learning. Results indicate that during instruction, students' energy conceptions progress from a set of disconnected ideas toward an integrated understanding that is organized around the principle of transformation, and that these more integrated conceptions both boost students' ability to make sense of everyday phenomena and lay the groundwork for more efficient and meaningful energy‐related learning in the future. © 2010 Wiley Periodicals, Inc. Sci Ed 95: 670–699, 2011en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleTransforming energy instruction in middle school to support integrated understanding and future learningen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Education, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Education, One Trinity Place, Trinity University, San Antonio, TX 78257, USAen_US
dc.contributor.affiliationotherDepartment of Science Teaching, Weizmann Institute of Science, Rehovot 76100, Israelen_US
dc.contributor.affiliationotherDepartment of Education, One Trinity Place, Trinity University, San Antonio, TX 78257, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87139/1/20423_ftp.pdf
dc.identifier.doi10.1002/sce.20423en_US
dc.identifier.sourceScience Educationen_US
dc.identifier.citedreferenceAmerican Association for the Advancement of Science.( 1993 ). Benchmarks for science literacy. New York: Oxford University Press.en_US
dc.identifier.citedreferenceBall, D. L., & Cohen, D. K. ( 1996 ). Reform by the book: What is—or might be—the role of curriculum materials in teacher learning and instructional reform ? Educational Researcher, 25 ( 9 ), 6 – 8.en_US
dc.identifier.citedreferenceBiggs, A., Daniel, L., & Feather, R. M. ( 2008 ). Glencoe science: Level red. New York: Glencoe/McGraw‐Hill.en_US
dc.identifier.citedreferenceBliss, J., & Ogborn, J. ( 1985 ). Children's choices of uses of energy. European Journal of Science Education, 7 ( 2 ), 195 – 203.en_US
dc.identifier.citedreferenceBransford, J. D., Brown, A. L., & Cocking, R. R. ( 2000 ). How people learn: Brain, mind, experience, and school (expanded edition). Washington, DC: National Academies Press.en_US
dc.identifier.citedreferenceBransford, J. D., & Schwartz, D. L. ( 1999 ). Rethinking transfer: A simple proposal with multiple implications. Review of Research in Education, 24, 61 – 100.en_US
dc.identifier.citedreferenceBrooks, J. G., & Brooks, M. G. ( 1993 ). In search for understanding: The case for constructivist classrooms. Alexandria, VA: Association for Supervision and Curriculum Development.en_US
dc.identifier.citedreferenceBrown, A. L., & Kane, M. J. ( 1988 ). Preschool children can learn to transfer: Learning to learn and learning from example. Cognitive Psychology, 20, 493 – 523.en_US
dc.identifier.citedreferenceBrown, J. S., Collins, A., & Duguid, P. ( 1989 ). Situated cognition and the culture of learning. Educational Researcher, 18 ( 1 ), 32 – 41.en_US
dc.identifier.citedreferenceBryce, T., & MacMillan, K. ( 2009 ). Momentum and kinetic energy: Confusable concepts in secondary school physics. Journal of Research in Science Teaching, 46 ( 7 ), 739 – 761.en_US
dc.identifier.citedreferenceCase, R. ( 1985 ). Intellectual development: Birth to adulthood. San Diego, CA: Academic Press.en_US
dc.identifier.citedreferenceCase, R. ( 1992 ). The mind's staircase: Exploring the conceptual underpinnings of children's thought and knowledge. Hillsdale, NJ: Erlbaum.en_US
dc.identifier.citedreferenceChi, M. T. H. ( 2005 ). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14 ( 2 ), 161 – 199.en_US
dc.identifier.citedreferenceChi, M. T. H., Feltovich, P. J., & Glaser, R. ( 1981 ). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121 – 152.en_US
dc.identifier.citedreferenceChinn, C. A., & Brewer, W. F. ( 1993 ). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science education. Review of Educational Research, 63 ( 1 ), 1 – 49.en_US
dc.identifier.citedreferenceClark, D. B. ( 2006 ). Longitudinal conceptual change in students' understanding of thermal equilibrium: An examination of the process of conceptual restructuring. Journal of the Learning Sciences, 24 ( 4 ), 467 – 563.en_US
dc.identifier.citedreferenceClement, J., Brown, D. E., & Zeitsman, A. ( 1989 ). Not all preconceptions are misconceptions: Finding “anchoring conceptions” for grounding instruction on students' intuitions. International Journal of Science Education, 11, 554 – 565.en_US
dc.identifier.citedreferenceCognition and Technology Group at Vanderbilt.( 1992 ). The Jasper Series as an example of anchored instruction: Theory, program description, and assessment data. Educational Psychologist, 27, 291 – 315.en_US
dc.identifier.citedreferenceDavis, E. A. ( 2003 ). Prompting middle school science students for productive reflection: Generic and directed prompts. Journal of the Learning Sciences, 12 ( 1 ), 91 – 142.en_US
dc.identifier.citedreferenceDeBoer, G., Dubois, N., Hermann Abell, C., & Lennon, K. ( 2008 ). Assessment linked to middle school science learning goals: Using pilot testing in item development. Paper presented at the National Association of Research in Science Teaching Annual Conference, Baltimore, MD.en_US
dc.identifier.citedreferenceDeBoer, G., Hermann Abell, C., Gogos, A., Michiels, A., Reagan, T., & Wilson, P. ( 2008 ). Assessment linked to science learning goals: probing student thinking through assessment. In J. Boaler, R. Douglas, & C. Stearns (Eds.), Assessing science learning: Perspectives from research and practice Washington, DC: National Science Teachers Association Press.en_US
dc.identifier.citedreferenceDiSessa, A. ( 1993 ). Toward an epistemology of physics. Cognition and Instruction, 12 ( 2–3 ), 105 – 225.en_US
dc.identifier.citedreferenceDiSessa, A. ( 2000 ). Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT Press.en_US
dc.identifier.citedreferenceDiSessa, A., & Sherin, B. ( 1998 ). What changes in conceptual change ? International Journal of Science Education, 20 ( 10 ), 1155 – 1191.en_US
dc.identifier.citedreferenceDiSessa, A., Wagner, J. F., & Mestre, J. P. ( 2005 ). What coordination has to say about transfer. In Transfer of learning (from a multidisciplinary perspective) (pp. 121 – 154 ). Greenwich, CT: Information Age.en_US
dc.identifier.citedreferenceDiSpezio, M., Linner‐Leube, M., Lisowski, M., Skoog, G., & Sparks, B. ( 1997 ). Science insights: Exploring matter and energy. Menlo Park, CA: Addison‐Wesley.en_US
dc.identifier.citedreferenceDomenéch, J. L., Gil‐Pérez, D., Gras‐Martí, A., Guisasola, J., Martínez‐ Torregrosa, J., Salinas, J., Trumper, R., et al. ( 2007 ). Teaching of energy issues: A debate proposal for a global reorientation. Science & Education, 16, 43 – 64.en_US
dc.identifier.citedreferenceDriver, R., Squires, A., Rushworth, P., & Wood‐Robinson, V. ( 1994a ). Making sense of secondary science: Research into children's ideas. New York: Routledge.en_US
dc.identifier.citedreferenceDriver, R., Squires, A., Rushworth, P., & Wood‐Robinson, V. ( 1994b ). Making sense of secondary science: Supporting materials for teachers. London: Routledge.en_US
dc.identifier.citedreferenceDuit, R. ( 1984 ). Learning the energy concept in school & empirical results from The Philippines and West Germany. Physics Education, 19, 59 – 66.en_US
dc.identifier.citedreferenceDuschl, R. A., Schweingruber, H. A., & Shouse, A. W. ( 2007 ). Taking science to school: Learning and teaching science in grades K‐8. Washington, DC: National Academies Press.en_US
dc.identifier.citedreferenceFeynman, R. P., Leighton, R. B., & Sands, M. L. ( 1989 ). The Feynman lectures on physics (Vol. 1 ). Redwood City, CA: Addison‐Wesley.en_US
dc.identifier.citedreferenceFlavell, J. ( 1994 ). Cognitive development: Past, present, and future. In R. Park, P. Ross, J. Ornstein, & C. Zahn‐Waxler (Eds.), A century of developmental psychology (pp. 569 – 587 ). Washington, DC: American Psychological Association.en_US
dc.identifier.citedreferenceFortus, D., Dershimer, C., Krajcik, J. S., Marx, R. W., & Mamlok‐Naaman, R. ( 2004 ). Design‐based science and student learning. Journal of Research in Science Teaching, 41 ( 10 ), 1081 – 1110.en_US
dc.identifier.citedreferenceFortus, D., & Krajcik, J. S. (in press). Curriculum coherence and learning progressions. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), The international handbook of research in science education ( 2nd ed. ). Dordrecht, The Netherlands: Springer‐Verlag.en_US
dc.identifier.citedreferenceFortus, D., Krajcik, J. S., Nordine, J. C., Plummer, J., Rogat, A., & Switzer, A. C. ( 2005 ). How can I use trash to power my stereo ? Ann Arbor: University of Michigan Center for Highly Interactive Classrooms, Curricula, & Computing in Education, NSF Center for Learning Technologies in Urban Schools.en_US
dc.identifier.citedreferenceGilbert, J., & Pope, M. ( 1986 ). Small group discussions about conceptions in science: A case study. Studies in Science Education, 10, 61 – 98.en_US
dc.identifier.citedreferenceKesidou, S., & Roseman, J. E. ( 2002 ). How well do middle school science programs measure up? Findings from project 2061's curriculum review. Journal of Research in Science Teaching, 39 ( 6 ), 522 – 549.en_US
dc.identifier.citedreferenceKlahr, D., & Nigam, M. ( 2004 ). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15, 661 – 667.en_US
dc.identifier.citedreferenceKrajcik, J. S., McNeill, K. L., & Reiser, B. J. ( 2008 ). Learning‐goals‐driven design model: Developing curriculum materials that align with national standards and incorporate project‐based pedagogy. Science Education, 92, 1 – 32.en_US
dc.identifier.citedreferenceKruger, C. ( 1990 ). Some primary teachers' ideas about energy. Physics Education, 25, 86 – 91.en_US
dc.identifier.citedreferenceKruger, C., Palacio, D., & Summers, M. ( 1992 ). Survey of English primary teachers' conceptions of energy, force, and materials. Science Education, 76, 339 – 351.en_US
dc.identifier.citedreferenceLee, H., & Liu, O. L. ( 2010 ). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94 ( 4 ), 665 – 688.en_US
dc.identifier.citedreferenceLinn, M. C., & Eylon, B. ( 2000 ). Knowledge integration and displaced volume. Journal of Science Education and Technology, 9 ( 4 ), 287 – 310.en_US
dc.identifier.citedreferenceLinn, M. C., & Eylon, B. ( 2006 ). Science education: Integrating views of learning and instruction. In Handbook of educational psychology ( 2nd ed ). New York: Erlbaum.en_US
dc.identifier.citedreferenceLinn, M. C., Eylon, B. S., Davis, E. A. ( 2004 ). The knowledge integration perspective on learning. In Internet environments for science education (pp. 2 – 46 ). Mahwah, NJ: Erlbaum.en_US
dc.identifier.citedreferenceLinn, M. C., Lee, H., Tinker, R., Husic, F., & Chiu, J. L. ( 2006 ). Teaching and assessing knowledge integration in science. Science, 313, 1049 – 1050.en_US
dc.identifier.citedreferenceLiu, X., & McKeough, A. ( 2005 ). Developmental growth in students' concept of energy: Analysis of selected items from the TIMSS database. Journal of Research in Science Teaching, 42 ( 5 ), 493 – 517.en_US
dc.identifier.citedreferenceMcCloskey, M. ( 1983 ). Naive theories of motion. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 229 – 324 ). Hillsdale, NJ: Erlbaum.en_US
dc.identifier.citedreferenceMualem, R., & Eylon, B. ( 2007 ). Physics with a smile & explaining phenomena with a qualitative problem‐solving strategy. The Physics Teacher, 45 ( 3 ), 158 – 163.en_US
dc.identifier.citedreferenceNational Research Council.( 1996 ). National Science Education Standards. National Academies Press.en_US
dc.identifier.citedreferenceNussbaum, J., & Novick, S. ( 1982 ). Alternative frameworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional Science, 11 ( 3 ), 183 – 200.en_US
dc.identifier.citedreferenceOsborne, R. J., & Gilbert, J. ( 1980 ). A technique for exploring students' views of the world. Physics Education, 15, 376 – 379.en_US
dc.identifier.citedreferencePiaget, J., & Inhelder, B. ( 1971 ). The psychology of the child. New York: Basic Books.en_US
dc.identifier.citedreferencePintó, R., Couso, D., & Gutierrez, R. ( 2005 ). Using research on teachers' transformations of innovations to inform teacher education. The case of energy degradation. Science Education, 89, 38 – 55.en_US
dc.identifier.citedreferenceRoseman, J. E., Linn, M. C., & Koppal, M. ( 2008 ). Characterizing curriculum coherence. In Y. Kali, J. E. Roseman, M. C. Linn, & M. Koppal (Eds.), Designing coherent science education: Implications for curriculum, instruction, and policy New York: Teachers College Press.en_US
dc.identifier.citedreferenceRoyer, J. M., Mestre, J. P., Dufresne, R. J., & Mestre, J. P. ( 2005 ). Framing the transfer problem. In Transfer of learning from a multidisciplinary perspective (pp. vii – xxiv ). Greenwich, CT: Information Age.en_US
dc.identifier.citedreferenceRuiz‐Primo, M., Shavelson, R., Hamilton, L., & Klein, S. ( 2002 ). On the evaluation of systemic science education reform: Searching for instructional sensitivity. Journal of Research in Science Teaching, 39 ( 5 ), 369 – 393.en_US
dc.identifier.citedreferenceSchwartz, D. L., & Bransford, J. D. ( 1998 ). A time for telling. Cognition and Instruction, 16 ( 4 ), 475 – 522.en_US
dc.identifier.citedreferenceSchwartz, D. L., Bransford, J. D., Sears, D., & Mestre, J. P. ( 2005 ). Efficiency and innovation in transfer (pp. 1 – 51 ). Greenwich, CT: Information Age.en_US
dc.identifier.citedreferenceSeastrom, M. M., Gruber, K. J., Henke, R., McGrath, D. J., & Cohen, B. A. ( 2004 ). Qualifications of the public school teacher workforce: Prevalence of out‐of‐field teaching 1987–1988 to 1999–2000 (revised). Washington, DC: U.S. Department of Education.en_US
dc.identifier.citedreferenceShwartz, Y., Weizman, A., Fortus, D., Krajcik, J. S., & Reiser, B. J. ( 2008 ). The IQWST experience: Using coherence as a design principle for a middle school science curriculum. The Elementary School Journal, 109 ( 2 ), 199 – 219.en_US
dc.identifier.citedreferenceSmith, C. L., Maclin, D., Houghton, C., & Hennessey, M. G. ( 2000 ). Sixth‐grade students' epistemologies of science: The impact of school science experiences on epistemological development & cognition and instruction. Cognition and Instruction, 18 ( 3 ), 349 – 422.en_US
dc.identifier.citedreferenceSmith, J. P., diSessa, A., & Roschelle, J. ( 1993 ). Misconceptions reconceived: A constructivist analysis of knowledge in pieces. Journal of the Learning Sciences, 3 ( 2 ), 115 – 163.en_US
dc.identifier.citedreferenceSolomon, J. ( 1983 ). Messy, contradictory, and obstinately persistent: A study of children's out‐of‐school ideas about energy. School Science Review, 65 ( 231 ), 225 – 233.en_US
dc.identifier.citedreferenceStarr, M. L., Casella, F., Fortus, D., Krajcik, J., Nordine, J. C., Plummer, J., Rogat, A., et al. ( 2009 ). Project‐based inquiry science: Energy. Armonk, NY: It's About Time.en_US
dc.identifier.citedreferenceStepans, J. ( 2003 ). Targeting students' science misconceptions: Physical science concepts using the conceptual change model (Vol. 3 ). Riverview, FL: Idea Factory.en_US
dc.identifier.citedreferenceSwackhamer, G. ( 2005 ). Cognitive resources for understanding energy. Retrieved November 3, 2010, from http://modeling.la.asu.edu/modeling/CognitiveResources‐Energy.pdf.en_US
dc.identifier.citedreferenceSwackhamer, G., & Hestenes, D. ( 2003 ). An energy concept inventory. Retrieved November 3, 2010, from http://modeling.asu.edu/modeling/00Madison.ppt.en_US
dc.identifier.citedreferenceTodd, R., Kilpatrick, M., Earvolino, A., Garcia, L. A., & Zapanta, L. ( 2002 ). Holt science & technology (grade 6). Austin, TX: Holt, Reinhart, and Winston.en_US
dc.identifier.citedreferenceTrumper, R. ( 1990 ). Being constructive: An alternative approach to the teaching of the energy concept & part one. International Journal of Science Education, 12, 343 – 354.en_US
dc.identifier.citedreferenceTrumper, R. ( 1993 ). Children's energy concepts: A cross‐age study. International Journal of Science Education, 15 ( 2 ), 139 – 148.en_US
dc.identifier.citedreferenceTrumper, R. ( 1998 ). A longitudinal study of physics students' conceptions of energy in pre‐service training for high school teachers. Journal of Science Education and Technology, 7 ( 4 ), 311 – 317.en_US
dc.identifier.citedreferencevan Huis, C., & van den Berg, E. ( 1993 ). Teaching energy: A systems approach. Physics Education, 28 ( 3 ), 146 – 153.en_US
dc.identifier.citedreferencevon Glaserfeld, E. ( 1998 ). Cognition, construction of knowledge, and teaching. In M. R. Matthews (Ed.), Constructivism in science education (pp. 11 – 30 ). Dordrecht, The Netherlands: Kluwer Academic.en_US
dc.identifier.citedreferenceWarren, J. ( 1982 ). The nature of energy. European Journal of Science Education, 4 ( 3 ), 295 – 297.en_US
dc.identifier.citedreferenceWarren, J. ( 1986 ). At what age should energy be taught ? Physics Education, 21, 154 – 156.en_US
dc.identifier.citedreferenceWatts, M. ( 1983 ). Some alternative views of energy. Physics Education, 18, 213 – 217.en_US
dc.identifier.citedreferenceWatts, M., & Gilbert, J. ( 1983 ). Enigmas in school science: Students' conceptions for scientifically associated words. Research in Science & Technical Education, 1 ( 2 ), 161 – 171.en_US
dc.identifier.citedreferenceWhite, B. Y., & Frederiksen, J. R. ( 1998 ). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16 ( 1 ), 3 – 118.en_US
dc.identifier.citedreferenceWu, H., Krajcik, J. S., & Soloway, E. ( 2001 ). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38 ( 7 ), 821 – 842.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.