Show simple item record

The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli

dc.contributor.authorAlteri, Christopher J.en_US
dc.contributor.authorLindner, Jonathon R.en_US
dc.contributor.authorReiss, Daniel J.en_US
dc.contributor.authorSmith, Sara N.en_US
dc.contributor.authorMobley, Harry L. T.en_US
dc.date.accessioned2011-11-10T15:39:41Z
dc.date.available2012-12-03T21:17:30Zen_US
dc.date.issued2011-10en_US
dc.identifier.citationAlteri, Christopher J.; Lindner, Jonathon R.; Reiss, Daniel J.; Smith, Sara N.; Mobley, Harry L. T. (2011). "The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli ." Molecular Microbiology 82(1). <http://hdl.handle.net/2027.42/87159>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87159
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleThe broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia colien_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, MI 48109, USAen_US
dc.identifier.pmid21854465en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87159/1/j.1365-2958.2011.07804.x.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87159/2/MMI_7804_sm_FigS1-4-TabS1.pdf
dc.identifier.doi10.1111/j.1365-2958.2011.07804.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAlpuche Aranda, C.M., Swanson, J.A., Loomis, W.P., and Miller, S.I. ( 1992 ) Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA 89: 10079 – 10083.en_US
dc.identifier.citedreferenceAlteri, C.J., Smith, S.N., and Mobley, H.L. ( 2009 ) Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5: e1000448.en_US
dc.identifier.citedreferenceBabior, B.M. ( 1978 ) Oxygen‐dependent microbial killing by phagocytes (first of two parts). N Engl J Med 298: 659 – 668.en_US
dc.identifier.citedreferenceBader, M.W., Navarre, W.W., Shiau, W., Nikaido, H., Frye, J.G., McClelland, M., et al. ( 2003 ) Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50: 219 – 230.en_US
dc.identifier.citedreferenceBader, M.W., Sanowar, S., Daley, M.E., Schneider, A.R., Cho, U., Xu, W., et al. ( 2005 ) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122: 461 – 472.en_US
dc.identifier.citedreferenceBarondess, J.J., and Beckwith, J. ( 1990 ) A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature 346: 871 – 874.en_US
dc.identifier.citedreferenceBearson, B.L., Wilson, L., and Foster, J.W. ( 1998 ) A low pH‐inducible, PhoPQ‐dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol 180: 2409 – 2417.en_US
dc.identifier.citedreferenceBekker, M., de Vries, S., Ter Beek, A., Hellingwerf, K.J., and de Mattos, M.J. ( 2009 ) Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd ‐II oxidase. J Bacteriol 191: 5510 – 5517.en_US
dc.identifier.citedreferenceBergsten, G., Samuelsson, M., Wullt, B., Leijonhufvud, I., Fischer, H., and Svanborg, C. ( 2004 ) PapG‐dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 189: 1734 – 1742.en_US
dc.identifier.citedreferenceBertani, G., and Weigle, J.J. ( 1953 ) Host controlled variation in bacterial viruses. J Bacteriol 65: 113 – 121.en_US
dc.identifier.citedreferenceBishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I., and Raetz, C.R. ( 2000 ) Transfer of palmitate from phospholipids to lipid A in outer membranes of gram‐negative bacteria. EMBO J 19: 5071 – 5080.en_US
dc.identifier.citedreferenceBishop, R.E., Lo, E.I., Khan, M.A., El Zoeiby, A., and Jia, W. ( 2004 ) Enzymology of lipid A palmitoylation in bacterial outer membranes. J Endotoxin Res 10: 107 – 112.en_US
dc.identifier.citedreferenceBorregaard, N., Schwartz, J.H., and Tauber, A.I. ( 1984 ) Proton secretion by stimulated neutrophils. Significance of hexose monophosphate shunt activity as source of electrons and protons for the respiratory burst. J Clin Invest 74: 455 – 459.en_US
dc.identifier.citedreferenceBreazeale, S.D., Ribeiro, A.A., McClerren, A.L., and Raetz, C.R. ( 2005 ) A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4‐Amino‐4‐deoxy‐l‐arabinose. Identification and function of UDP‐4‐deoxy‐4‐formamido‐l‐arabinose. J Biol Chem 280: 14154 – 14167.en_US
dc.identifier.citedreferenceChromek, M., Slamova, Z., Bergman, P., Kovacs, L., Podracka, L., Ehren, I., et al. ( 2006 ) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12: 636 – 641.en_US
dc.identifier.citedreferenceDatsenko, K.A., and Wanner, B.L. ( 2000 ) One‐step inactivation of chromosomal genes in Escherichia coli K‐12 using PCR products. Proc Natl Acad Sci USA 97: 6640 – 6645.en_US
dc.identifier.citedreferenceDe Groote, M.A., Ochsner, U.A., Shiloh, M.U., Nathan, C., McCord, J.M., Dinauer, M.C., et al. ( 1997 ) Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH‐oxidase and nitric oxide synthase. Proc Natl Acad Sci USA 94: 13997 – 14001.en_US
dc.identifier.citedreferenceDeCoursey, T.E., Morgan, D., and Cherny, V.V. ( 2003 ) The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422: 531 – 534.en_US
dc.identifier.citedreferenceDi, A., Brown, M.E., Deriy, L.V., Li, C., Szeto, F.L., Chen, Y., et al. ( 2006 ) CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 8: 933 – 944.en_US
dc.identifier.citedreferenceFalla, T.J., Karunaratne, D.N., and Hancock, R.E. ( 1996 ) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271: 19298 – 19303.en_US
dc.identifier.citedreferenceFields, P.I., Swanson, R.V., Haidaris, C.G., and Heffron, F. ( 1986 ) Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 83: 5189 – 5193.en_US
dc.identifier.citedreferenceFields, P.I., Groisman, E.A., and Heffron, F. ( 1989 ) A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243: 1059 – 1062.en_US
dc.identifier.citedreferenceFigueroa‐Bossi, N., and Bossi, L. ( 1999 ) Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 33: 167 – 176.en_US
dc.identifier.citedreferenceForbes, J.R., and Gros, P. ( 2001 ) Divalent‐metal transport by NRAMP proteins at the interface of host–pathogen interactions. Trends Microbiol 9: 397 – 403.en_US
dc.identifier.citedreferenceForbes, J.R., and Gros, P. ( 2003 ) Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102: 1884 – 1892.en_US
dc.identifier.citedreferenceFoster, J.W. ( 2004 ) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2: 898 – 907.en_US
dc.identifier.citedreferenceGalan, J.E., and Curtiss, R., 3rd ( 1989 ) Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microb Pathog 6: 433 – 443.en_US
dc.identifier.citedreferenceGarcia Vescovi, E., Soncini, F.C., and Groisman, E.A. ( 1996 ) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84: 165 – 174.en_US
dc.identifier.citedreferenceGlagolev, A.N., and Skulachev, V.P. ( 1978 ) The proton pump is a molecular engine of motile bacteria. Nature 272: 280 – 282.en_US
dc.identifier.citedreferenceGodaly, G., Bergsten, G., Hang, L., Fischer, H., Frendeus, B., Lundstedt, A.C., et al. ( 2001 ) Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol 69: 899 – 906.en_US
dc.identifier.citedreferenceGolubeva, Y.A., and Slauch, J.M. ( 2006 ) Salmonella enterica serovar Typhimurium periplasmic superoxide dismutase SodCI is a member of the PhoPQ regulon and is induced in macrophages. J Bacteriol 188: 7853 – 7861.en_US
dc.identifier.citedreferenceGruenheid, S., Pinner, E., Desjardins, M., and Gros, P. ( 1997 ) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185: 717 – 730.en_US
dc.identifier.citedreferenceGrundling, A., Manson, M.D., and Young, R. ( 2001 ) Holins kill without warning. Proc Natl Acad Sci USA 98: 9348 – 9352.en_US
dc.identifier.citedreferenceGunn, J.S., Lim, K.B., Krueger, J., Kim, K., Guo, L., Hackett, M., and Miller, S.I. ( 1998 ) PmrA–PmrB‐regulated genes necessary for 4‐aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27: 1171 – 1182.en_US
dc.identifier.citedreferenceGuo, L., Lim, K.B., Gunn, J.S., Bainbridge, B., Darveau, R.P., Hackett, M., and Miller, S.I. ( 1997 ) Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP–phoQ. Science 276: 250 – 253.en_US
dc.identifier.citedreferenceGuo, L., Lim, K.B., Poduje, C.M., Daniel, M., Gunn, J.S., Hackett, M., and Miller, S.I. ( 1998 ) Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95: 189 – 198.en_US
dc.identifier.citedreferenceHagberg, L., Engberg, I., Freter, R., Lam, J., Olling, S., and Svanborg Eden, C. ( 1983 ) Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic Escherichia coli of human origin. Infect Immun 40: 273 – 283.en_US
dc.identifier.citedreferenceImlay, J.A. ( 2008 ) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755 – 776.en_US
dc.identifier.citedreferenceIrizarry, R.A., Hobbs, B., Collin, F., Beazer‐Barclay, Y.D., Antonellis, K.J., Scherf, U., and Speed, T.P. ( 2003 ) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249 – 264.en_US
dc.identifier.citedreferenceIyer, R., Iverson, T.M., Accardi, A., and Miller, C. ( 2002 ) A biological role for prokaryotic ClC chloride channels. Nature 419: 715 – 718.en_US
dc.identifier.citedreferenceJang, S., and Imlay, J.A. ( 2007 ) Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron–sulfur enzymes. J Biol Chem 282: 929 – 937.en_US
dc.identifier.citedreferenceJia, W., El Zoeiby, A., Petruzziello, T.N., Jayabalasingham, B., Seyedirashti, S., and Bishop, R.E. ( 2004 ) Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 279: 44966 – 44975.en_US
dc.identifier.citedreferenceKarlinsey, J.E., Maguire, M.E., Becker, L.A., Crouch, M.L., and Fang, F.C. ( 2010 ) The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. Mol Microbiol 78: 669 – 685.en_US
dc.identifier.citedreferenceKehres, D.G., Zaharik, M.L., Finlay, B.B., and Maguire, M.E. ( 2000 ) The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36: 1085 – 1100.en_US
dc.identifier.citedreferenceKier, L.D., Weppelman, R.M., and Ames, B.N. ( 1979 ) Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J Bacteriol 138: 155 – 161.en_US
dc.identifier.citedreferenceKim, B., Richards, S.M., Gunn, J.S., and Slauch, J.M. ( 2010 ) Protecting against antimicrobial effectors in the phagosome allows SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium. J Bacteriol 192: 2140 – 2149.en_US
dc.identifier.citedreferenceKlipper‐Aurbach, Y., Wasserman, M., Braunspiegel‐Weintrob, N., Borstein, D., Peleg, S., Assa, S., et al. ( 1995 ) Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin‐dependent diabetes mellitus. Med Hypotheses 45: 486 – 490.en_US
dc.identifier.citedreferenceKonings, W.N., Albers, S.V., Koning, S., and Driessen, A.J. ( 2002 ) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81: 61 – 72.en_US
dc.identifier.citedreferenceKorshunov, S.S., and Imlay, J.A. ( 2002 ) A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram‐negative bacteria. Mol Microbiol 43: 95 – 106.en_US
dc.identifier.citedreferenceKrulwich, T.A., Davidson, L.F., Filip, S.J., Jr, Zuckerman, R.S., and Guffanti, A.A. ( 1978 ) The protonmotive force and beta‐galactoside transport in Bacillus acidocaldarius. J Biol Chem 253: 4599 – 4603.en_US
dc.identifier.citedreferenceLane, M.C., Alteri, C.J., Smith, S.N., and Mobley, H.L. ( 2007 ) Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci USA 104: 16669 – 16674.en_US
dc.identifier.citedreferenceLittle, J.W. ( 2005 ) Lysogeny, prophage induction, and lysogenic conversion. In Phages, Their Role in Pathogenesis and Biotechnology. Waldor, M.K., Friedman, D.I., and Adhya, S.L. (eds). Washington, DC: ASM Press, pp. 37 – 54.en_US
dc.identifier.citedreferenceMaguire, M.E. ( 2006 ) Magnesium transporters: properties, regulation and structure. Front Biosci 11: 3149 – 3163.en_US
dc.identifier.citedreferenceMarteyn, B., West, N.P., Browning, D.F., Cole, J.A., Shaw, J.G., Palm, F., et al. ( 2010 ) Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465: 355 – 358.en_US
dc.identifier.citedreferenceMatin, A., Wilson, B., Zychlinsky, E., and Matin, M. ( 1982 ) Proton motive force and the physiological basis of delta pH maintenance in Thiobacillus acidophilus. J Bacteriol 150: 582 – 591.en_US
dc.identifier.citedreferenceMatsuzaki, K., Sugishita, K., Fujii, N., and Miyajima, K. ( 1995 ) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34: 3423 – 3429.en_US
dc.identifier.citedreferenceMichels, M., and Bakker, E.P. ( 1985 ) Generation of a large, protonophore‐sensitive proton motive force and pH difference in the acidophilic bacteria Thermoplasma acidophilum and Bacillus acidocaldarius. J Bacteriol 161: 231 – 237.en_US
dc.identifier.citedreferenceMiller, S.I., Kukral, A.M., and Mekalanos, J.J. ( 1989 ) A two‐component regulatory system ( phoP phoQ ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 86: 5054 – 5058.en_US
dc.identifier.citedreferenceMiller, S.I., Pulkkinen, W.S., Selsted, M.E., and Mekalanos, J.J. ( 1990 ) Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun 58: 3706 – 3710.en_US
dc.identifier.citedreferenceMinagawa, S., Ogasawara, H., Kato, A., Yamamoto, K., Eguchi, Y., Oshima, T., et al. ( 2003 ) Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J Bacteriol 185: 3696 – 3702.en_US
dc.identifier.citedreferenceMobley, H.L., Green, D.M., Trifillis, A.L., Johnson, D.E., Chippendale, G.R., Lockatell, C.V., et al. ( 1990 ) Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58: 1281 – 1289.en_US
dc.identifier.citedreferenceMonsieurs, P., De Keersmaecker, S., Navarre, W.W., Bader, M.W., De Smet, F., McClelland, M., et al. ( 2005 ) Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J Mol Evol 60: 462 – 474.en_US
dc.identifier.citedreferenceMurata, T., Tseng, W., Guina, T., Miller, S.I., and Nikaido, H. ( 2007 ) PhoPQ‐mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar typhimurium. J Bacteriol 189: 7213 – 7222.en_US
dc.identifier.citedreferenceMurray, S.R., Ernst, R.K., Bermudes, D., Miller, S.I., and Low, K.B. ( 2007 ) pmrA (Con) confers pmrHFIJKL‐dependent EGTA and polymyxin resistance on msbB Salmonella by decorating lipid A with phosphoethanolamine. J Bacteriol 189: 5161 – 5169.en_US
dc.identifier.citedreferenceNatalello, A., Doglia, S.M., Carey, J., and Grandori, R. ( 2007 ) Role of flavin mononucleotide in the thermostability and oligomerization of Escherichia coli stress‐defense protein WrbA. Biochemistry 46: 543 – 553.en_US
dc.identifier.citedreferenceNougayrede, J.P., Homburg, S., Taieb, F., Boury, M., Brzuszkiewicz, E., Gottschalk, G., et al. ( 2006 ) Escherichia coli induces DNA double‐strand breaks in eukaryotic cells. Science 313: 848 – 851.en_US
dc.identifier.citedreferenceOyston, P.C., Dorrell, N., Williams, K., Li, S.R., Green, M., Titball, R.W., and Wren, B.W. ( 2000 ) The response regulator PhoP is important for survival under conditions of macrophage‐induced stress and virulence in Yersinia pestis. Infect Immun 68: 3419 – 3425.en_US
dc.identifier.citedreferencePark, S., and Imlay, J.A. ( 2003 ) High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 185: 1942 – 1950.en_US
dc.identifier.citedreferenceProst, L.R., Daley, M.E., Le Sage, V., Bader, M.W., Le Moual, H., Klevit, R.E., and Miller, S.I. ( 2007 ) Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 26: 165 – 174.en_US
dc.identifier.citedreferenceRichard, H., and Foster, J.W. ( 2004 ) Escherichia coli glutamate‐ and arginine‐dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186: 6032 – 6041.en_US
dc.identifier.citedreferenceSims, P.J., Waggoner, A.S., Wang, C.H., and Hoffman, J.F. ( 1974 ) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13: 3315 – 3330.en_US
dc.identifier.citedreferenceSmith, S.N., Hagan, E.C., Lane, M.C., and Mobley, H.L. ( 2010 ) Dissemination and systemic colonization of uropathogenic Escherichia coli in a murine model of bacteremia. MBio 1: e00262‐10.en_US
dc.identifier.citedreferenceSmyth, G.K. ( 2004 ) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.en_US
dc.identifier.citedreferenceSoncini, F.C., Garcia Vescovi, E., Solomon, F., and Groisman, E.A. ( 1996 ) Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP‐regulated genes. J Bacteriol 178: 5092 – 5099.en_US
dc.identifier.citedreferenceTrent, M.S., Ribeiro, A.A., Lin, S., Cotter, R.J., and Raetz, C.R. ( 2001 ) An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4‐amino‐4‐deoxy‐l‐arabinose to lipid A: induction on polymyxin‐resistant mutants and role of a novel lipid‐linked donor. J Biol Chem 276: 43122 – 43131.en_US
dc.identifier.citedreferenceVaara, M. ( 1992 ) Agents that increase the permeability of the outer membrane. Microbiol Rev 56: 395 – 411.en_US
dc.identifier.citedreferenceVazquez‐Torres, A., Jones‐Carson, J., Mastroeni, P., Ischiropoulos, H., and Fang, F.C. ( 2000 ) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192: 227 – 236.en_US
dc.identifier.citedreferenceWelch, R.A., Burland, V., Plunkett, G., 3rd, Redford, P., Roesch, P., Rasko, D., et al. ( 2002 ) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99: 17020 – 17024.en_US
dc.identifier.citedreferenceWinfield, M.D., and Groisman, E.A. ( 2004 ) Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc Natl Acad Sci USA 101: 17162 – 17167.en_US
dc.identifier.citedreferenceWooster, D.G., Maruvada, R., Blom, A.M., and Prasadarao, N.V. ( 2006 ) Logarithmic phase Escherichia coli K1 efficiently avoids serum killing by promoting C4bp‐mediated C3b and C4b degradation. Immunology 117: 482 – 493.en_US
dc.identifier.citedreferenceWosten, M.M., Kox, L.F., Chamnongpol, S., Soncini, F.C., and Groisman, E.A. ( 2000 ) A signal transduction system that responds to extracellular iron. Cell 103: 113 – 125.en_US
dc.identifier.citedreferenceYu, X.J., McGourty, K., Liu, M., Unsworth, K.E., and Holden, D.W. ( 2010 ) pH sensing by intracellular Salmonella induces effector translocation. Science 328: 1040 – 1043.en_US
dc.identifier.citedreferenceZhou, Z., Lin, S., Cotter, R.J., and Raetz, C.R. ( 1999 ) Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4‐amino‐4‐deoxy‐l‐arabinose, phosphoethanolamine and palmitate. J Biol Chem 274: 18503 – 18514.en_US
dc.identifier.citedreferenceZwir, I., Shin, D., Kato, A., Nishino, K., Latifi, T., Solomon, F., et al. ( 2005 ) Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA 102: 2862 – 2867.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.