Show simple item record

High-Stiffness, Lock-and-Key Heat-Reversible Locator-Snap Systems for the Design for Disassembly

dc.contributor.authorShalaby, Mohammed Mouniren_US
dc.contributor.authorSaitou, Kazuhiroen_US
dc.date.accessioned2011-11-14T16:30:15Z
dc.date.available2011-11-14T16:30:15Z
dc.date.issued2008-08-03en_US
dc.identifier.citationShalaby, M.; Saitou, K. (2008). High-Stiffness, Lock-and-Key Heat-Reversible Locator-Snap Systems for the Design for Disassembly." Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference DETC2008-49664: 303-314. <http://hdl.handle.net/2027.42/87223>en_US
dc.identifier.isbn978-0-7918-4329-1en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87223
dc.description.abstractRecent legislative and social pressures have driven manufacturers to consider effective part reuse and material recycling at the end of product life at the design stage. One of the key considerations is to use joints that can disengage with minimum labor, part damage, and material contamination. This paper extends our previous work on the design of high-stiffness reversible locator-snap system that can disengage non-destructively with localized heat [1, 2], to include 1) modeling for tolerance stack-up and 2) lock-and-key concept to ensure that snaps only disengage when the right procedure is followed. The design problem is posed as an optimization problem to find the locations, numbers, and orientations of locators and snaps, and the number, locations and sizes of heating areas, which realize the release of snaps with minimum heat, compliance, and tolerance stack-up. The motion and structural requirements are considered constraints. Screw Theory is utilized to pre-calculate a set of feasible types and orientations of locators and snaps that are examined during optimization. The optimization problem is solved using Multi Objective Genetic Algorithm (MOGA) coupled with structural and thermal FEA. The method is applied on two case studies. The Pareto-optimal solutions present alternative designs with different trade-offs between the design objectives while meeting all the constraints.en_US
dc.publisherASMEen_US
dc.titleHigh-Stiffness, Lock-and-Key Heat-Reversible Locator-Snap Systems for the Design for Disassemblyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87223/4/Saitou61.pdf
dc.identifier.doi10.1115/DETC2008-49664en_US
dc.identifier.sourceProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferenceen_US
dc.owningcollnameMechanical Engineering, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.