Show simple item record

Pulsatile flow and mass transport past a circular cylinder

dc.contributor.authorZierenberg, Jennifer R.en_US
dc.contributor.authorFujioka, Hidekien_US
dc.contributor.authorSuresh, Vinoden_US
dc.contributor.authorBartlett, Robert H.en_US
dc.contributor.authorHirschl, Ronald B.en_US
dc.contributor.authorGrotberg, James B.en_US
dc.date.accessioned2011-11-15T15:57:39Z
dc.date.available2011-11-15T15:57:39Z
dc.date.issued2006-01en_US
dc.identifier.citationZierenberg, Jennifer R.; Fujioka, Hideki; Suresh, Vinod; Bartlett, Robert H.; Hirschl, Ronald B.; Grotberg, James B. (2006). "Pulsatile flow and mass transport past a circular cylinder." Physics of Fluids 18(1): 013102-013102-15. <http://hdl.handle.net/2027.42/87285>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87285
dc.description.abstractThe mass transport of a pulsatile free-stream flow past a single circular cylinder is investigated as a building block for an artificial lung device. The free stream far from the cylinder is represented by a time-periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest are the steady Reynolds number (Re), Womersley parameter (α)(α), sinusoidal amplitude (A)(A), and the Schmidt number (Sc)(Sc). The ranges investigated in this study are 5 ⩽ Re ⩽ 405⩽Re⩽40, 0.25 ⩽ α ⩽ 40.25⩽α⩽4, 0.25 ⩽ A ⩽ 0.750.25⩽A⩽0.75, and Sc = 1000Sc=1000. A pair of vortices downstream of the cylinder is observed in almost all cases investigated. These vortices oscillate in size and strength as αα and AA are varied. For α<αcα<αc, where αc = 0.005A−1.13Re1.33αc=0.005A−1.13Re1.33, the vortex is always attached to the cylinder (persistent); while for α>αcα>αc, the vortex is attached to the cylinder only during part of a time cycle (intermittent). The time-averaged Sherwood number, Sh̄, is found to be largely influenced by the steady Reynolds number, increasing approximately as Re1/2Re1∕2. For α = 0.25α=0.25, Sh̄ is less than the steady (α = 0α=0, A = 0A=0) value and decreases with increasing AA. For α = 2α=2 and α = 4α=4, Sh̄ is greater than the steady value and increases with increasing AA. These qualitatively opposite effects of pulsatility are discussed in terms of quasisteady versus unsteady transport. The maximum increase over steady transport due to pulsatility varies between 14.4% and 20.9% for Re = 10-40Re=10-40, α = 4α=4, and A = 0.75A=0.75.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePulsatile flow and mass transport past a circular cylinderen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109–2099en_US
dc.contributor.affiliationumDepartment of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109–2099en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87285/2/013102_1.pdf
dc.identifier.doi10.1063/1.2164475en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceJ. B. Zwischenberger, C. M. Anderson, K. E. Cook, S. D. Lick, L. F. Mockros, and R. H. Bartlett, “Development of an implantable artificial lung: Challenges and progress,” ASAIO J. 47, 316 (2001).en_US
dc.identifier.citedreferenceJ. B. Zwischenberger and S. K. Alpard, “Artificial lungs: A new inspiration,” Perfusion 17, 253 (2002).en_US
dc.identifier.citedreferenceS. D. Lick and J. B. Zwischenberger, “Artificial lung: Bench toward bedside,” ASAIO J. 50, 2 (2004).en_US
dc.identifier.citedreferenceJ. W. Haft, B. P. Griffith, R. B. Hirschl, and R. H. Bartlett, “Results of an artificial-lung survey to lung transplant program directors,” J. Heart Lung Transplant 21, 467 (2002).en_US
dc.identifier.citedreferenceR. Hilpert, “Warmeabgabe von geheizten Drahten und Rohren im Luftstrom,” Forsch. Geb. Ingenieurwes. 4, 215 (1933).en_US
dc.identifier.citedreferenceP. H. Vogtlander and C. A. P. Bakker, “An experimental study of mass transfer from a liquid flow to wires and gauzes,” Chem. Eng. Sci. 18, 583 (1963).en_US
dc.identifier.citedreferenceB. G. V. Zijnen, “Heat transfer from horizontal cylinders to a turbulent air flow,” Appl. Sci. Res., Sect. A 7, 205 (1958).en_US
dc.identifier.citedreferenceV. V. Gnielinski, “Berechnung mittlerer warme- und stoffubergangskoeffizienten an laminar und turbulent uberstromten einzelkorpern mit hilfe einer einheitlichen gleichung,” Forsch. Ingenieurwes. 41, 145 (1975).en_US
dc.identifier.citedreferenceV. N. Kurdyumov and E. Fernandez, “Heat transfer from a circular cylinder at low Reynolds numbers,” Trans. ASME, Ser. C: J. Heat Transfer 120, 72 (1998).en_US
dc.identifier.citedreferenceE. M. Sparrow, J. P. Abraham, and J. C. K. Tong, “Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross-flow,” Int. J. Heat Mass Transfer 47, 5285 (2004).en_US
dc.identifier.citedreferenceC. T. Leung, N. W. M. Ko, and K. H. Ma, “Heat-transfer from a vibrating cylinder,” J. Sound Vib. 75, 581 (1981).en_US
dc.identifier.citedreferenceD. Karanth, G. W. Rankin, and K. Sridhar, “A finite-difference calculation of forced convective heat-transfer from an oscillating cylinder,” Int. J. Heat Mass Transfer 37, 1619 (1994).en_US
dc.identifier.citedreferenceJ. Perwaiz and T. E. Base, “Heat-transfer from a cylinder and finned tube in a pulsating cross-flow,” Exp. Therm. Fluid Sci. 5, 506 (1992).en_US
dc.identifier.citedreferenceH. J. Sung, K. S. Hwang, and J. M. Hyun, “Experimental study on mass-transfer from a circular-cylinder in pulsating flow,” Int. J. Heat Mass Transfer 37, 2203 (1994).en_US
dc.identifier.citedreferenceH. M. Badr, “Effect of free-stream fluctuations on laminar forced convection from a straight tube,” Int. J. Heat Mass Transfer 40, 3653 (1997).en_US
dc.identifier.citedreferenceG. E. Karniadakis, “Numerical simulation of forced-convection heat-transfer from a cylinder in cross-flow,” Int. J. Heat Mass Transfer 31, 107 (1988).en_US
dc.identifier.citedreferenceR. J. Goldstein and J. Karni, “The effect of a wall boundary-layer on local mass-transfer from a cylinder in cross-flow,” Trans. ASME, Ser. C: J. Heat Transfer 106, 260 (1984).en_US
dc.identifier.citedreferenceS. Tiwari, G. Biswas, P. L. N. Prasad, and S. Basu, “Numerical prediction of flow and heat transfer in a rectangular channel with a built-in circular tube,” Trans. ASME, Ser. C: J. Heat Transfer 125, 413 (2003).en_US
dc.identifier.citedreferenceC. H. K. Williamson, “Sinusoidal flow relative to circular-cylinders,” J. Fluid Mech. 155, 141 (1985).en_US
dc.identifier.citedreferenceP. Justesen, “A numerical study of oscillating flow around a circular-cylinder,” J. Fluid Mech. 222, 157 (1991).en_US
dc.identifier.citedreferenceH. M. Badr, S. C. R. Dennis, S. Kocabiyik, and P. Nguyen, “Viscous oscillatory flow about a circular-cylinder at small to moderate Strouhal number,” J. Fluid Mech. 303, 215 (1995).en_US
dc.identifier.citedreferenceC. F. Lange, F. Durst, and M. Breuer, “Momentum and heat transfer from cylinders in laminar crossflow at 10(−4)⇐Re⇐20010(−4)⇐Re⇐200,” Int. J. Heat Mass Transfer 41, 3409 (1998).en_US
dc.identifier.citedreferenceS. V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980).en_US
dc.identifier.citedreferenceJ. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. Y. S. Li, and J. W. H. Liu, “A supernodal approach to sparse partial pivoting,” SIAM J. Matrix Anal. Appl. 20, 720 (1999).en_US
dc.identifier.citedreferenceH. Watanabe and K. Iizuka, “The influence of dissolved-gases on the density of water,” Metrologia 21, 19 (1985).en_US
dc.identifier.citedreferenceG. S. Kell, “Effects of isotopic composition, temperature, pressure, and dissolved-gases on density of liquid water,” J. Phys. Chem. Ref. Data 6, 1109 (1977).en_US
dc.identifier.citedreferenceS. C. R. Dennis and G. Z. Chang, “Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100,” J. Fluid Mech. 42, 471 (1970).en_US
dc.identifier.citedreferenceA. E. Hamielec and J. D. Raal, “Numerical studies of viscous flow around circular cylinders,” Phys. Fluids 12, 11 (1969).en_US
dc.identifier.citedreferenceS. J. D. Dalessio and S. C. R. Dennis, “A method of domain decomposition for calculating the steady flow past a cylinder,” J. Eng. Math. 28, 227 (1994).en_US
dc.identifier.citedreferenceS. J. D. Dalessio and S. C. R. Dennis, “A vorticity model for viscous-flow past a cylinder,” Comput. Fluids 23, 279 (1994).en_US
dc.identifier.citedreferenceW. M. Deen, Analysis of Transport Phenomena (Oxford University Press, New York, 1998).en_US
dc.identifier.citedreferenceS. Whitaker, Elementary Heat Transfer Analysis (Pergamon, New York, 1976).en_US
dc.identifier.citedreferenceA. Zukauskas, “Heat Transfer from Tubes in Crossflow,” in Advances in Heat Transfer, edited by J. P. Hartnett and T. F. Irvine (Academic, New York, 1987), Vol. 18, p. 87.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.