Show simple item record

Incorporating spatial dependence into a multicellular tumor spheroid growth model

dc.contributor.authorGarner, Allen L.en_US
dc.contributor.authorLau, Y. Y.en_US
dc.contributor.authorJackson, Trachette L.en_US
dc.contributor.authorUhler, Michael D.en_US
dc.contributor.authorJordan, David W.en_US
dc.contributor.authorGilgenbach, Ronald M.en_US
dc.date.accessioned2011-11-15T15:58:44Z
dc.date.available2011-11-15T15:58:44Z
dc.date.issued2005-12-15en_US
dc.identifier.citationGarner, Allen L.; Lau, Y. Y.; Jackson, Trachette L.; Uhler, Michael D.; Jordan, David W.; Gilgenbach, Ronald M. (2005). "Incorporating spatial dependence into a multicellular tumor spheroid growth model." Journal of Applied Physics 98(12): 124701-124701-8. <http://hdl.handle.net/2027.42/87333>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87333
dc.description.abstractRecent models for organism and tumor growth yield simple scaling laws based on conservation of energy. Here, we extend such a model to include spatial dependence to model necrotic core formation. We adopt the allometric equation for tumor volume with a reaction-diffusion equation for nutrient concentration. In addition, we assume that the total metabolic energy and average cellular metabolic rate depend on nutrient concentration in a Michaelis-Menten-like manner. From experimental results, we relate the necrotic volume to nutrient consumption and estimate both the time and nutrient concentration at necrotic core formation. Based on experimental results, we demand that the necrotic core radius varies linearly with tumor radius after core formation and extend the equations for tumor volume and nutrient concentration to the postnecrotic core regime. In particular, we obtain excellent agreement with experimental data and the final steady-state viable rim thickness.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleIncorporating spatial dependence into a multicellular tumor spheroid growth modelen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumBioelectromagnetism Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumBioelectromagnetism Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 and Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumBioelectromagnetism Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87333/2/124701_1.pdf
dc.identifier.doi10.1063/1.2146073en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceA. J. H. Sale and W. A. Hamilton, Biochim. Biophys. Acta 148, 781 (1967);A. J. H. Sale and W. A. Hamilton, Biochim. Biophys. Acta 163, 37 (1968).en_US
dc.identifier.citedreferenceD. Rabussay, N. B. Dev, J. Fewell, L. C. Smith, G. Widera, and L. Zhang, J. Phys. D 36, 348 (2003).en_US
dc.identifier.citedreferenceP. Lefesvre, J. Attema, and D. van Bekkum, BMC Molecular Biology 3, 12 (2002).en_US
dc.identifier.citedreferenceJ. C. Weaver and Yu. A. Chizmadzhev, Bioelectrochem. Bioenerg. 41, 135 (1996).en_US
dc.identifier.citedreferenceM. Behrend, A. Kuthi, X. Gu, P. T. Vernier, L. Marcu, C. M. Craft, and M. A. Gundersen, IEEE Trans. Dielectr. Electr. Insul. 10, 820 (2003).en_US
dc.identifier.citedreferenceK. H. Schoenbach, R. P. Joshi, J. F. Kolb, N. Chen, M. Stacey, P. F. Blackmore, E. S. Buescher, and S. J. Beebe, Proc. IEEE 92, 1122 (2004).en_US
dc.identifier.citedreferenceK. H. Schoenbach, S. J. Beebe, and E. S. Buescher, Bioelectromagnetics (N.Y.) (N.Y.) 22, 440 (2001).en_US
dc.identifier.citedreferenceE. S. Buescher and K. H. Schoenbach, IEEE Trans. Dielectr. Electr. Insul. 10, 788 (2003).en_US
dc.identifier.citedreferenceS. J. Beebe, P. M. Fox, L. J. Rec, K. Somers, R. H. Stark, and K. H. Schoenbach, IEEE Trans. Plasma Sci. 30, 286 (2002).en_US
dc.identifier.citedreferenceS. J. Beebe, P. M. Fox, L. J. Rec, E. L. Willis, and K. H. Schoenbach, FASEB J. 17, 1493 (2003).en_US
dc.identifier.citedreferenceS. J. Beebe, J. White, P. F. Blackmore, Y. Deng, K. Somers, and K. H. Schoenbach, DNA Cell Biol. 22, 785 (2003).en_US
dc.identifier.citedreferenceA. L. Garner et al., IEEE Trans. Plasma Sci. 32, 2073 (2004).en_US
dc.identifier.citedreferenceJ. Deng, K. H. Schoenbach, E. S. Buescher, P. S. Hair, P. M. Fox, and S. J. Beebe, Biophys. J. 84, 2709 (2003).en_US
dc.identifier.citedreferenceP. T. Vernier, Y. Sun, L. Marcu, C. M. Craft, and M. A. Gundersen, FEBS Lett. 572, 103 (2004).en_US
dc.identifier.citedreferenceR. Nuccitelli, U. Pliquett, W. Ford, X. Chen, J. Swanson, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, Mol. Biol. Cell (accepted).en_US
dc.identifier.citedreferenceG. Sersa et al., Br. J. Cancer 87, 1047 (2002).en_US
dc.identifier.citedreferenceM. Cemazar, C. S. Parkins, A. L. Holder, D. J. Chaplin, G. M. Tozer, and G. Sersa, Br. J. Cancer 84, 565 (2001).en_US
dc.identifier.citedreferenceA. Friedman, Discrete Contin. Dyn. Syst., Ser. B 4, 147 (2004);J. Moreira and A. Deutsch, Adv. Complex Syst. 5, 247 (2002).en_US
dc.identifier.citedreferenceY. Tao, N. Yoshida, and Q. Gao, Nonlinearity 17, 867 (2004).en_US
dc.identifier.citedreferenceN. V. Matnzaris, S. Webb, and H. G. Othmer, J. Math. Biol. 49, 111 (2004).en_US
dc.identifier.citedreferenceB. C. Sansone, M. Scalerandi, and C. A. Condat, Phys. Rev. Lett. 87, 128102 (2001).en_US
dc.identifier.citedreferenceM. Scalerandi and F. Peggion, Phys. Rev. E 66, 031903 (2002).en_US
dc.identifier.citedreferenceM. Scalerandi and B. C. Sansone, Phys. Rev. Lett. 89, 218101 (2002).en_US
dc.identifier.citedreferenceP. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Cancer Res. 59, 4770 (1999).en_US
dc.identifier.citedreferenceM. E. Orme and M. A. J. Chaplain, IMA J. Math. Appl. Med. Biol. 13, 73 (1996).en_US
dc.identifier.citedreferenceM. E. Orme and M. A. J. Chaplain, IMA J. Math. Appl. Med. Biol. 14, 189 (1997).en_US
dc.identifier.citedreferenceM. Scalerandi, B. C. Sansone, and C. A. Condat, Phys. Rev. E 65, 011902 (2001).en_US
dc.identifier.citedreferenceR. K. Sachs, L. R. Hlatky, and P. Hahnfeldt, Math. Comput. Modell. 33, 1297 (2001).en_US
dc.identifier.citedreferenceS. R. McDougall, A. R. A. Anderson, and M. A. J. Chaplain, Bull. Math. Biol. 64, 673 (2002).en_US
dc.identifier.citedreferenceC. Guiot, P. G. Degiorgis, P. P. Delsanto, P. Gabriele, and T. S. Deisboeck, J. Theor. Biol. 225, 147 (2003).en_US
dc.identifier.citedreferenceP. P. Delsanto, C. Guiot, P. G. Degiorgis, C. A. Condat, Y. Mansury, and T. S. Deisboeck, Appl. Phys. Lett. 85, 4225 (2004).en_US
dc.identifier.citedreferenceL. von Bertalanffy, Q. Rev. Biol. 32, 217 (1957).en_US
dc.identifier.citedreferenceR. E. Ricklefs, Funct. Ecol. 17, 384 (2003).en_US
dc.identifier.citedreferenceG. B. West, J. H. Brown, and B. J. Enquist, Science 284, 1677 (1999).en_US
dc.identifier.citedreferenceG. B. West, J. H. Brown, and B. J. Enquist, Nature (London) 413, 628 (2001).en_US
dc.identifier.citedreferenceG. B. West, J. H. Brown, and B. J. Enquist, Funct. Ecol. 18, 188 (2004).en_US
dc.identifier.citedreferenceG. B. West, W. H. Woodruff, and J. H. Brown, Proc. Natl. Acad. Sci. U.S.A. 99, 2473 (2002).en_US
dc.identifier.citedreferenceJ. F. Gillooly, J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov, Science 293, 2248 (2001).en_US
dc.identifier.citedreferenceV. M. Savage, J. F. Gillooly, J. H. Brown, G. B. West, and E. L. Charnov, Am. Nat. 163, 429 (2004).en_US
dc.identifier.citedreferenceJ. P. Freyer and R. M. Sutherland, Cancer Res. 46, 3504 (1986).en_US
dc.identifier.citedreferenceG. Hamilton, Cancer Lett. 131, 29 (1998).en_US
dc.identifier.citedreferenceL. A. Kunz-Schughart, Cell Biol. Int. 23, 157 (1999).en_US
dc.identifier.citedreferenceW. Mueller-Klieser, Am. J. Physiol. 273, C1109 (1997).en_US
dc.identifier.citedreferenceJ. J. Casciari, S. V. Sotirchos, and R. M. Sutherland, J. Cell Physiol. 151, 386 (1992).en_US
dc.identifier.citedreferenceG. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder, and R. K. Jain, Nat. Biotechnol. 15, 778 (1997).en_US
dc.identifier.citedreferenceR. Chignola, A. Schenetti, G. Andrighetto, E. Chiesa, R. Foromi, S. Sartoris, G. Tridente, and D. Liberati, Cell Prolif 33, 219 (2000).en_US
dc.identifier.citedreferenceJ. A. Sherratt and M. A. J. Chaplain, J. Math. Biol. 43, 291 (2001).en_US
dc.identifier.citedreferenceA. D. Confer and M. C. Ziskin, Cancer Res. 43, 556 (1983).en_US
dc.identifier.citedreferenceR. Chignola et al., Cell Prolif 32, 39 (1999).en_US
dc.identifier.citedreferenceM. M. Eatock, A. Schatzlein, and S. B. Kaye, Cancer Treat Rev. 26, 191 (2000).en_US
dc.identifier.citedreferenceN. E. Timmins, S. Dietmair, and L. K. Nielsen, Angiogenesis 7, 97 (2004).en_US
dc.identifier.citedreferenceN. Raghunand, R. A. Gatenby, and R. J. Gillies, Br. J. Radiol. 76, S11 (2003).en_US
dc.identifier.citedreferenceP. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Cancer Res. 59, 4770 (1990).en_US
dc.identifier.citedreferenceC. S. Brock and S. M. Lee, Eur. Respir. J. 19, 557 (2002).en_US
dc.identifier.citedreferenceK. Mross, Drug Resistance Updates 3, 223 (2000).en_US
dc.identifier.citedreferenceP. Wachsberger, R. Burd, and A. P. Dicker, Clin. Cancer Res. 9, 1957 (2003).en_US
dc.identifier.citedreferenceH. M. Byrne, in Cancer Modeling and Simulation, edited by L. Preziosi (Chapman and Hall, Boca Raton, 2003), p. 75.en_US
dc.identifier.citedreferenceA. C. Burton, Growth 30, 157 (1966).en_US
dc.identifier.citedreferenceS. I. Rubinow, Introduction to Mathematical Biology (Dover, Mineola, NY, 1975), pp. 49 and 50;L. Edelstein-Keshet, Mathematical Models in Biology (McGraw-Hill, New York, 1988), pp. 271–276.en_US
dc.identifier.citedreferenceR. Chignola, A. Schenetti, G. Andrighetto, E. Chiesa, R. Foroni, S. Sartoris, G. Tridente, and D. Liberati, Cell Prolif 33, 219 (2000).en_US
dc.identifier.citedreferenceJ. J. Casciari, S. V. Sotirchos, and R. M. Sutherland, Cell Prolif 25, 1 (1992).en_US
dc.identifier.citedreferenceJ. J. Casciari, S. V. Sotirchos, and R. M. Sutherland, Cancer Res. 48, 3905 (1988).en_US
dc.identifier.citedreferenceJ. P. Freyer, Cancer Res. 48, 2432 (1988).en_US
dc.identifier.citedreferenceJ. P. Kirkpatrick, D. M. Brizel, and M. W. Dewhirst, Radiat. Res. 159, 336 (2003).en_US
dc.identifier.citedreferenceJ. P. Ward and J. R. King, Math. Biosci. 181, 177 (2003).en_US
dc.identifier.citedreferenceD. Miklavcic, T. Jarm, R. Karba, and G. Sersa, Math. Comput. Simul. 39, 597 (1995).en_US
dc.identifier.citedreferenceR. P. Joshi, Q. Hu, and K. H. Schoenbach, IEEE Trans. Plasma Sci. 32, 1677 (2004).en_US
dc.identifier.citedreferenceR. P. Joshi, Q. Hu, K. H. Schoenbach, and S. J. Beebe, Phys. Rev. E 69, 051901 (2004).en_US
dc.identifier.citedreferenceQ. Hu, S. Viswanadham, R. P. Joshi, K. H. Schoenbach, S. J. Beebe, and P. F. Blackmore, Phys. Rev. E 71, 031914 (2005).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.