Show simple item record

Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. I. Accuracy assessments

dc.contributor.authorMullin, John A.en_US
dc.contributor.authorDahm, Werner J. A.en_US
dc.date.accessioned2011-11-15T15:59:54Z
dc.date.available2011-11-15T15:59:54Z
dc.date.issued2006-03en_US
dc.identifier.citationMullin, John A.; Dahm, Werner J. A. (2006). "Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. I. Accuracy assessments." Physics of Fluids 18(3): 035101-035101-18. <http://hdl.handle.net/2027.42/87388>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87388
dc.description.abstractResults are presented from quantitative assessments of the accuracy of velocity gradients measured by a dual-plane stereo particle image velocimetry (DSPIV) technique that allows direct, highly resolved, nonintrusive measurements of all nine simultaneous components of the velocity gradient tensor fields ∂ui/∂xj∂ui∕∂xj at the quasi-universal intermediate and small scales of turbulent shear flows. The present results systematically determine the sources of errors in DSPIV measurements and the resulting accuracy of velocity gradients obtained from such measurements. Intrinsic errors resulting from asymmetric stereo imaging are found by synthetic particle imaging to be no larger than 0.8%. True particle imaging in finite-thickness light sheets is found from single-plane imaging tests to produce net errors in measured velocity differences of 6% for in-plane components and 10% for out-of-plane components. Further errors from limits on the accuracy of independent dual light sheet generation and positioning are found from coincident-plane imaging tests to produce overall errors of 9% and 16% in the in-plane and out-of-plane velocity differences. Practical DSPIV velocity gradient component measurements are found from separated-plane imaging tests in a turbulent shear flow to show excellent similarity in on-diagonal (i = j)(i=j) and off-diagonal (i ≠ j)(i≠j) components of ∂ui/∂xj∂ui∕∂xj, as well as mean-square gradient values showing agreement within 1%–4% of ideal isotropic limit values. The resulting measured divergence values are consistent with overall rms errors obtained from the coincident-plane imaging tests. Collectively, these results establish the accuracy with which all nine simultaneous components of the velocity gradient tensor fields ∂ui/∂xj∂ui∕∂xj can be obtained from DSPIV measurements at the quasi-universal intermediate and small scales of turbulent shear flows.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. I. Accuracy assessmentsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLaboratory for Turbulence & Combustion (LTC), Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87388/2/035101_1.pdf
dc.identifier.doi10.1063/1.2166447en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceC. Meneveau and J. Katz, ”Scale-invariance and turbulence models for large-eddy simulation,” Annu. Rev. Fluid Mech. 32, 1 (2000).en_US
dc.identifier.citedreferenceG. K. Batchelor and A. A. Townsend, “The nature of turbulent motion at large wave-numbers,” Proc. R. Soc. London, Ser. A 199, 238 (1949).en_US
dc.identifier.citedreferenceL. S. G. Kovasznay, “Turbulence measurements,” in High Speed Aerodynamics and Jet Propulsion, edited by R. W. Landenbuerg, B. Lewis, R. N. Pease, and H. S. Taylor (Princeton University Press, Princeton, 1954), pp. 213–285.en_US
dc.identifier.citedreferenceJ. F. Foss, “Accuracy and uncertainty of transverse vorticity measurements,” Bull. Am. Phys. Soc. 21, 1237 (1976).en_US
dc.identifier.citedreferenceJ. Balint, J. M. Wallace, and P. Vukoslavcevic, “The velocity and vorticity fields of a turbulent flow. Part 1. Simultaneous measurements by hot-wire anemometry,” J. Fluid Mech. 228, 25 (1991).en_US
dc.identifier.citedreferenceJ. M. Wallace and J. F. Foss, “The measurements of vorticity in turbulent flows,” Annu. Rev. Fluid Mech. 27, 469 (1995).en_US
dc.identifier.citedreferenceR. A. Antonia, T. Zhou, and Y. Zhu, “Three-component vorticity measurements in a turbulent grid flow,” J. Fluid Mech. 374, 29 (1998).en_US
dc.identifier.citedreferenceA. Tsinober, E. Kit, and T. Dracos, “Experimental investigation of the field of velocity gradients in turbulent flows,” J. Fluid Mech. 242, 169 (1992).en_US
dc.identifier.citedreferenceE. Kit, A. Tsinober, and T. Dracos, “Velocity-gradients in a turbulent jet flow,” Appl. Sci. Res. 51, 185 (1993).en_US
dc.identifier.citedreferenceJ. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373 (1997).en_US
dc.identifier.citedreferenceT. Hori and J. Sakakibara, “High-speed scanning stereoscopic PIV for 3D vorticity measurements in liquids,” Meas. Sci. Technol. 15, 1067 (2004).en_US
dc.identifier.citedreferenceW. J. A. Dahm, L. K. Su, and K. B. Southerland, “A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurements in turbulent flows,” Phys. Fluids A 4, 2191 (1992).en_US
dc.identifier.citedreferenceL. K. Su and W. J. A. Dahm, “Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. I. Assessment of errors,” Phys. Fluids 8, 1869 (1996).en_US
dc.identifier.citedreferenceL. K. Su and W. J. A. Dahm, “Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. II. Experimental results,” Phys. Fluids 8, 1883 (1996).en_US
dc.identifier.citedreferenceC. J. Kähler and J. Kompenhans, “Multiple plane stereo PIV: Technical realization and fluid-mechanical significance,” in Proceedings of the 3rd International Workshop on PIV, Santa Barbara (1999).en_US
dc.identifier.citedreferenceC. J. Kähler, M. Stanislas, and J. Kompenhans, “Spatio-temporal flow structure investigation of near-wall turbulence by means of multiplane stereo particle image velocimetry,” in Proceedings of the 11th International Symposium on Applications of Laser Technology to Fluid Mechanics, Lisbon, Portugal (2002).en_US
dc.identifier.citedreferenceC. J. Kähler, “Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV,” Exp. Fluids 36, 114 (2004).en_US
dc.identifier.citedreferenceH. Hu, T. Saga, T. Kobayashi, N. Taniguchi, and M. Yasuki, “ Dual-plane stereoscopic particle image velocimetry: System set-up and its application on a lobed jet mixing flow,” Exp. Fluids 31, 277 (2001).en_US
dc.identifier.citedreferenceB. Ganapathisubramani, E. K. Longmire, I. Marusic, and S. Pothos, “Dual-plane PIV technique to resolve complete velocity gradient tensor in a turbulent boundary layer,” in Proceedings of the 12th International Symposium on Applied Laser Technology to Fluid Mechanics, Lisbon, Portugal (2004).en_US
dc.identifier.citedreferenceJ. A. Mullin and W. J. A. Dahm, “Highly resolved three-dimensional velocity measurments via dual-plane stereo particle image velocimetry (DSPIV) in turbulent flows,” 40th AIAA Aerospace Sciences Meeting, AIAA Paper No. 2002-0290 (2002).en_US
dc.identifier.citedreferenceJ. A. Mullin and W. J. A. Dahm, “Dual-plane stereo PIV (DSPIV) measurements of the velocity gradient tensor field at the small scales of turbulent flows,” in Proceedings of the 3rd International Conference on Turbulent Shear Flow Phenomena, Sendai, Japan (2003).en_US
dc.identifier.citedreferenceJ. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry (DSPIV) for measuring velocity gradient fields at intermediate and small scales of turbulent flows,” Exp. Fluids 38, 185 (2005).en_US
dc.identifier.citedreferenceJ. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results,” Phys. Fluids 18, 035102 (2006).en_US
dc.identifier.citedreferenceN. J. Lawson and J. Wu, “Three-dimensional particle image velocimetry: Error analysis of stereoscopic techniques,” Meas. Sci. Technol. 8, 894 (1997).en_US
dc.identifier.citedreferenceN. J. Lawson and J. Wu, “Three-dimensional particle image velocimetry: experimental error analysis of a digital angular stereoscopic system,” Meas. Sci. Technol. 8, 1455 (1997).en_US
dc.identifier.citedreferenceS. Coudert, J. Westerweel, and T. Fournel, “Comparison between asymmetric and symmetric stereoscopic DPIV system,” in Proceedings of the 10th International Symposium on Applications of Laser Technology to Fluid Mechanics, Lisbon, Portugal (2000).en_US
dc.identifier.citedreferenceR. D. Keane and R. J. Adrian, “Optimization of particle image velocimeters. Part I: Double pulsed systems,” Meas. Sci. Technol. 1, 1202 (1990).en_US
dc.identifier.citedreferenceM. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practicle Guide (Springer, New York 1998).en_US
dc.identifier.citedreferenceJ. A. Mullin, “A study of velocity gradient fields at the intermediate and small scales of turbulent shear flows via dual-plane stereo particle image velocimetry,” Ph.D. dissertation, The University of Michigan, Ann Arbor, MI (2004).en_US
dc.identifier.citedreferenceS. Biringen, “An experimental investigation of an axisymmetric jet issuing into a coflowing stream,” VKI Technical Note 110 (1975).en_US
dc.identifier.citedreferenceT. B. Nickels and A. E. Perry, “An experimental and theoretical study of the turbulent coflowing jet.” J. Fluid Mech. 309, 157 (1996).en_US
dc.identifier.citedreferenceI. Wygnanski and H. Fiedler, “Some measurements in the self-preserving jet,” J. Fluid Mech. 38, 577 (1969).en_US
dc.identifier.citedreferenceH. J. Hussein, W. K. George, and S. P. Capp, “Comparison between hot-wire and burst-mode LDA velocity measurements in a fully developed turbulent jet,” AIAA Paper No. 88-0424 (1988).en_US
dc.identifier.citedreferenceN. Ninomiya and N. Kasaki, “Measurement of the Reynolds stress budgets in an axisymmetric free jet with the aid of three-dimensional particle tracking velocimetry,” in Proceedings of the 9th Symposium Turbulent Shear Flows, Kyoto, Japan (1993).en_US
dc.identifier.citedreferenceK. A. Buch and W. J. A. Dahm, “Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part. 1. Sc≫1Sc≫1,” J. Fluid Mech. 317, 21 (1996).en_US
dc.identifier.citedreferenceK. A. Buch and W. J. A. Dahm, “Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc ≈ 1Sc≈1,” J. Fluid Mech. 364, 1 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.