Show simple item record

Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results

dc.contributor.authorMullin, John A.en_US
dc.contributor.authorDahm, Werner J. A.en_US
dc.date.accessioned2011-11-15T16:02:22Z
dc.date.available2011-11-15T16:02:22Z
dc.date.issued2006-03en_US
dc.identifier.citationMullin, John A.; Dahm, Werner J. A. (2006). "Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results." Physics of Fluids 18(3): 035102-035102-28. <http://hdl.handle.net/2027.42/87499>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87499
dc.description.abstractResults are presented from highly resolved dual-plane stereo particle image velocimetry (DSPIV) measurements for the structure, statistics, similarity, and scaling of all nine simultaneous components of the velocity gradient tensor fields ∂ui/∂xj∂ui∕∂xj on the quasi-universal intermediate and small scales of turbulent shear flows. Measurements were obtained at three combinations of the outer-scale Reynolds number ReδReδ and the local mean shear rate SS in the fully developed self-similar far field of a turbulent jet, and thus reflect the combined effects of the large-scale structure, spatial inhomogeneities, and anisotropies inherent in such a flow. Conditions addressed in this study correspond to local outer-scale Reynolds numbers Reδ = 6,000Reδ=6,000 and 30,000 and local mean shear values Sδ/uc = 0Sδ∕uc=0 and 1.7, corresponding to Taylor-scale Reynolds numbers Reλ ≈ 44Reλ≈44 and 113 and shear rates Sk/ε = 0Sk∕ε=0 and 2.1. Gradient fields investigated here include the individual velocity gradient component fields, the strain rate component fields and the associated principal strain rates, the vorticity component fields and their orientations with respect to the principal strain axes, the enstrophy and enstrophy production rate fields, and the true kinetic energy dissipation rate field. Results normalized on both inner- and outer-scale variables are presented to allow interpretation relative to the similarity and scaling implied by classical turbulence theory. For both ReδReδ values at S = 0S=0, results show that most aspects of these gradient fields are essentially in agreement with the predictions from homogeneous isotropic turbulence, while for S ≠ 0S≠0 there are significant and consistent departures from isotropy. Results also provide direct measurements of the exponential scaling factors in the left and right tails of the velocity gradient distributions, as well as quantification of the inner (viscous) length scales in the enstrophy and dissipation rate fields. In addition, strong evidence for multifractal scale similarity at length scales greater than about twice the viscous length λνλν is found in both the enstrophy and dissipation rate fields.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental resultsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLaboratory for Turbulence & Combustion (LTC), Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87499/2/035102_1.pdf
dc.identifier.doi10.1063/1.2166448en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceA. Pumir and B. I. Schraiman, “Persistent small scale anisotropy in homogeneous shear flows,” Phys. Rev. Lett. 75, 3114 (1995).en_US
dc.identifier.citedreferenceK. R. Sreenivasan and R. A. Antonia, “The phenomenology of small-scale turbulence,” Annu. Rev. Fluid Mech. 29, 435 (1997).en_US
dc.identifier.citedreferenceS. Garg and Z. Warhaft, “On the small scale structure of simple shear flow,” Phys. Fluids 10, 662 (1998).en_US
dc.identifier.citedreferenceL. Biferale and M. Vergassola,“Isotropy vs anisotropy in small-scale turbulence,” Phys. Fluids 13, 2139 (2001).en_US
dc.identifier.citedreferenceK. A. Buch and W. J. A. Dahm, “Experimental study of the fine-scale structure of conserved scalar mixing in turbulent flows. Part 1. Sc≪1Sc≪1,” J. Fluid Mech. 317, 21 (1996).en_US
dc.identifier.citedreferenceK. A. Buch and W. J. A. Dahm, “Experimental study of the fine-scale structure of conserved scalar mixing in turbulent flows. Part 2. Sc ≈ 1Sc≈1,” J. Fluid Mech. 364, 1 (1998).en_US
dc.identifier.citedreferenceW. J. A. Dahm and K. B. Southerland, “Quantitative flow visualization via fully resolved four-dimensional spatio-temporal imaging,” in Flow Visualization: Techniques and Examples, edited by A. Smits and T. T. Lim (Imperial College, London, 1999), pp. 231–258.en_US
dc.identifier.citedreferenceL. K. Su and N. T. Clemens, “Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows,” Exp. Fluids 27, 507 (1999).en_US
dc.identifier.citedreferenceL. K. Su and N. T. Clemens, “The structure of fine-scale scalar mixing in gas-phase planar turbulent jets,” J. Fluid Mech. 488, 1 (2003).en_US
dc.identifier.citedreferenceC. A. Friehe, C. W. Van Atta, and C. H. Gibson, “Jet turbulence: dissipation rate measurements and correlations,” AGARD Conf. Proc. CP-93, 18-1 (1971).en_US
dc.identifier.citedreferenceM. Nelkin, “Universality and scaling in fully developed turbulence,” Adv. Geophys. 43, 143 (1994).en_US
dc.identifier.citedreferenceG. Stolovitsky, P. P. Kailasanath, , and K. R. Sreenivasan, “Refined similarity hypotheses for passive scalars mixed by turbulence,” J. Fluid Mech. 297, 275 (1995).en_US
dc.identifier.citedreferenceW. J. A. Dahm, and K. B. Southerland, “Experimental assessment of Taylor's hypothesis and its applicability to dissipation estimates in turbulent flows,” Phys. Fluids 9, 2101 (1997).en_US
dc.identifier.citedreferenceM. M. Rogers and P. Moin, “The structure of the vorticity field in homogeneous turbulent flows,” J. Fluid Mech. 176, 33 (1987).en_US
dc.identifier.citedreferenceS. Tavoularis and S. Corrsin, “Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1,” J. Fluid Mech. 104, 311 (1981).en_US
dc.identifier.citedreferenceM. Ferchichi and S. Tavoularis, “Reynolds number effects on the fine structure of uniformly sheared turbulence,” Phys. Fluids 12, 2942 (2000).en_US
dc.identifier.citedreferenceJ. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry (DSPIV) for measuring velocity gradients at intermediate and small scales of turbulent flows,” Exp. Fluids 38, 185 (2005).en_US
dc.identifier.citedreferenceJ. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. I. Accuracy assessments,” Phys. Fluids 18, 035101 (2006).en_US
dc.identifier.citedreferenceS. Biringen, “An experimental investigation of an axisymmetric jet issuing into a coflowing stream,” VKI Technical Note 110 (1975).en_US
dc.identifier.citedreferenceT. B. Nickels and A. E. Perry, “An experimental and theoretical study of the turbulent coflowing jet,” J. Fluid Mech. 309, 157 (1996).en_US
dc.identifier.citedreferenceJ. A. Mullin, “A study of velocity gradient fields at the intermediate and small scales of turbulent shear flows via dual-plane stereo particle image velocimetry,” Ph.D. dissertation, The University of Michigan, Ann Arbor, MI (2004).en_US
dc.identifier.citedreferenceJ. Jimenez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, “The structure of intense vorticity in isotropic turbulence,” J. Fluid Mech. 255, 65 (1993).en_US
dc.identifier.citedreferenceT. Gotoh, D. Fukayama, and T. Nakano, “Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation,” Phys. Fluids 14, 1065 (2002).en_US
dc.identifier.citedreferenceA. Tsinober, E. Kit, and T. Dracos, “Experimental investigation of the field of velocity gradients in turbulent flows,” J. Fluid Mech. 242, 169 (1992).en_US
dc.identifier.citedreferenceT. Gotoh, “Probability density functions in steady-state Burgers turbulence,” Phys. Fluids 11, 2143 (1999).en_US
dc.identifier.citedreferenceB. Tao, J. Katz, and C. Meneveau, “Statistical geometry of subgridscale stresses determined from holographic particle image velocimetry measurements,” J. Fluid Mech. 457, 35 (2002).en_US
dc.identifier.citedreferenceT. S. Lund and M. M. Rogers, “An improved measure of strain rate probability in turbulent flows,” Phys. Fluids 6, 1838 (1994).en_US
dc.identifier.citedreferenceW. T. Ashurst, A. R. Kerstein, R. M. Kerr, and C. H. Gibson, “Alignment of vorticity and scalar gradient in simulated Navier-Stokes turbulence,” Phys. Fluids 30, 2343 (1987).en_US
dc.identifier.citedreferenceL. K. Su and W. J. A. Dahm, “Scalar imaging velocimetry measurements of the velocity gradien tensor field in turbulent flows. I. Assessment of errors,” Phys. Fluids 8, 1869 (1996).en_US
dc.identifier.citedreferenceL. K. Su and W. J. A. Dahm, “Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. II. Experimental results,” Phys. Fluids 8, 1883 (1996).en_US
dc.identifier.citedreferenceL. Ong and J. M. Wallace, “Joint probability density analysis of the structure and dynamics of the vorticity field of a turbulent boundary layer,” J. Fluid Mech. 367, 291 (1998).en_US
dc.identifier.citedreferenceJ. Jimenez, “Kinematic alignment effects in turbulent flows,” Phys. Fluids A 4, 652 (1992).en_US
dc.identifier.citedreferenceV. Yakhot, “Pressure-velocity correlations and scaling exponents in turbulence,” J. Fluid Mech. 495, 135 (2003).en_US
dc.identifier.citedreferenceW. J. A. Dahm and K. A. Buch, “Lognormality of the scalar dissipation pdf in turbulent flows,” Phys. Fluids A 1, 1290 (1989).en_US
dc.identifier.citedreferenceK. A. Buch, “Fine scale structure of conserved scalar mixing in turbulent shear flows: Sc≫1Sc≫1, Sc ≈ 1Sc≈1 and implications for reacting flows,” Report No. 026779-5, Department of Aerospace Engineering, The University of Michigan (1991) .en_US
dc.identifier.citedreferenceC. Meneveau and K. R. Sreenivasan, “Simple multifractal cascade model for fully developed turbulence,” Phys. Rev. Lett. 59, 1424 (1987).en_US
dc.identifier.citedreferenceC. Meneveau and K. R. Sreenivasan, “The multifractal nature of the turbulent energy dissipation,” J. Fluid Mech. 224, 429 (1991).en_US
dc.identifier.citedreferenceK. R. Sreenivasan, “Fractals and multifractals in fluid dynamics,” Annu. Rev. Fluid Mech. 23, 539 (1991).en_US
dc.identifier.citedreferenceE. Siggia, “Numerical study of small-scale intermittency in three-dimensional turbulence,” J. Fluid Mech. 107, 375 (1981).en_US
dc.identifier.citedreferenceR. Kerr, “Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence,” J. Fluid Mech. 153, 31 (1985).en_US
dc.identifier.citedreferenceS. Chen, K. R. Sreenivasan, and M. Nelkin, “Inertial range scalings of dissipation and enstrophy in isotropic turbulence,” Phys. Rev. Lett. 79, 1253 (1997).en_US
dc.identifier.citedreferenceC. Meneveau, K. R. Sreenivasan, P. Kailasnath, and M. S. Fan, “Joint multifractal measures: Theory and applications to turbulence,” Phys. Rev. A 41, 894 (1990).en_US
dc.identifier.citedreferenceV. L’vov and I. Procaccia, “The universal scaling exponents of anisotropy in turbulence and their measurement,” Phys. Fluids 8, 2565 (1996).en_US
dc.identifier.citedreferenceM. Nelkin, “Enstrophy and dissipation must have the same scaling exponent in the high Reynolds number limit of fluid turbulence,” Phys. Fluids 11, 2202 (1999).en_US
dc.identifier.citedreferenceR. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part 3. Multifractal scaling,” J. Fluid Mech. 378, 127 (1997).en_US
dc.identifier.citedreferenceC. J. Kähler and J. Kompenhans, “Multiple plane stereo PIV: Technical realization and fluid mechanical significance,” in Proceedings of the 3rd International Workshop on PIV, Santa Barbara (1999).en_US
dc.identifier.citedreferenceH. Hu, T. Saga, T. Kobayashi, N. Taniguchi, and M. Yasuki, “Dual-plane stereoscopic particle image velocimetry: System set-up and its application on a lobed jet mixing flow,” Exp. Fluids 31, 277 (2001).en_US
dc.identifier.citedreferenceJ. A. Mullin and W. J. A. Dahm, “Highly resolved three-dimensional velocity measurments via dual-plane stereo particle image velocimetry (DSPIV) in turbulent flows,” AIAA Paper No. 2002-0290 (2002).en_US
dc.identifier.citedreferenceC. J. Kähler, M. Stanislas, and J. Kompenhans, “Spatio-temporal flow structure investigation of near-wall turbulence by means of multiplane stereo particle image velocimetry,” in Proceedings of the 11th International. Symposium on Applications of Laser Technology to Fluid Mechanics, Lisbon, Portugal (2002).en_US
dc.identifier.citedreferenceJ. A. Mullin and W. J. A. Dahm, “Dual-plane stereo PIV (DSPIV) measurements of the velocity gradient tensor field at the small scales of turbulent flows,” in Proceedings of the 3rd International Conference on Turbulence and Shear Flow Processes, Sendai, Japan (2003).en_US
dc.identifier.citedreferenceC. J. Kähler, “Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV,” Exp. Fluids 36, 114 (2004).en_US
dc.identifier.citedreferenceB. Ganapathisubramani, E. K. Longmire, I. Marusic, and S. Pothos, “Dual-plane PIV technique to resolve complete velocity gradient tensor in a turbulent boundary layer,” in Proceedings of the 12th International Symposium on Applied Laser Technology to Fluid Mechanics, Lisbon, Portugal (2004).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.