Show simple item record

Stress evolution in GaAsN alloy films

dc.contributor.authorReason, M.en_US
dc.contributor.authorWeng, X.en_US
dc.contributor.authorYe, W.en_US
dc.contributor.authorDettling, D.en_US
dc.contributor.authorHanson, S.en_US
dc.contributor.authorObeidi, G.en_US
dc.contributor.authorGoldman, R. S.en_US
dc.date.accessioned2011-11-15T16:03:48Z
dc.date.available2011-11-15T16:03:48Z
dc.date.issued2005-05-15en_US
dc.identifier.citationReason, M.; Weng, X.; Ye, W.; Dettling, D.; Hanson, S.; Obeidi, G.; Goldman, R. S. (2005). "Stress evolution in GaAsN alloy films." Journal of Applied Physics 97(10): 103523-103523-7. <http://hdl.handle.net/2027.42/87566>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87566
dc.description.abstractWe have investigated stress evolution in dilute nitride GaAs1−xNxGaAs1−xNx alloy films grown by plasma-assisted molecular-beam epitaxy. For coherently strained films (x<2.5%)(x<2.5%), a comparison of stresses measured via in situ wafer curvature measurements, with those determined from x-ray rocking curves using a linear interpolation of lattice parameter and elastic constants, suggests significant bowing of the elastic properties of GaAsN. The observed stress differences are used to quantify the composition-dependent elastic constant bowing parameters. For films with x>2.5%x>2.5%, in situ wafer curvature measurements reveal a signature for stress relaxation. Atomic force microscopy and transmission electron microscopy measurements indicate that stress relaxation occurs by a combination of elastic relaxation via island formation and plastic relaxation associated with the formation of stacking faults.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleStress evolution in GaAsN alloy filmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87566/2/103523_1.pdf
dc.identifier.doi10.1063/1.1900289en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceM. Weyers, M. Sato, and H. Ando, Jpn. J. Appl. Phys., Part 2 31, L853 (1992).en_US
dc.identifier.citedreferenceI. A. Buyanova, W. M. Chen, and B. Monemar, MRS Internet J. Nitride Semicond. Res. 6, 2 (2001).en_US
dc.identifier.citedreferenceL. Bellaiche, S.-H. Wei, and A. Zunger, Phys. Rev. B 54, 17568 (1996).en_US
dc.identifier.citedreferenceW. G. Bi and C. W. Tu, Appl. Phys. Lett. 70, 1608 (1997).en_US
dc.identifier.citedreferenceJ. Salzman and H. Temkin, Mater. Sci. Eng., B 50, 148 (1997).en_US
dc.identifier.citedreferenceA. Nishikawa, R. Katayama, K. Onabe, and Y. Shiraki, J. Cryst. Growth 251, 427 (2003).en_US
dc.identifier.citedreferenceK. Uesugi, N. Morooka, and I. Suemune, Appl. Phys. Lett. 74, 1254 (1999).en_US
dc.identifier.citedreferenceD. Schlenker et al., Jpn. J. Appl. Phys., Part 1 39, 5751 (2000).en_US
dc.identifier.citedreferenceL. Bellaiche, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 70, 3558 (1997).en_US
dc.identifier.citedreferenceI. Suemune, K. Uesugi, and T.-Y. Seong, Semicond. Sci. Technol. 17, 755 (2002).en_US
dc.identifier.citedreferenceW. K. Cheah, W. J. Fan, S. F. Yoon, S. Z. Wang, and W. K. Loke, J. Appl. Phys. 94, 3828 (2003).en_US
dc.identifier.citedreferenceJ. Toivonen et al., J. Mater. Sci.: Mater. Electron. 14, 267 (2003).en_US
dc.identifier.citedreferenceJ. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).en_US
dc.identifier.citedreferenceS. G. Spruytte, M. C. Larson, W. Wampler, C. W. Coldren, H. E. Petersen, and J. S. Harris, J. Cryst. Growth 227, 506 (2001).en_US
dc.identifier.citedreferenceW. J. Fan, S. F. Yoon, T. K. Ng, S. Z. Wang, W. K. Loke, R. Liu, and A. Wee, Appl. Phys. Lett. 80, 4136 (2002).en_US
dc.identifier.citedreferenceY. Zhang, A. Mascarenhas, H. P. Xin, and C. W. Tu, Phys. Rev. B 61, 4433 (2000).en_US
dc.identifier.citedreferenceM. H. Ya, Y. F. Chen, and Y. S. Huang, J. Appl. Phys. 92, 1446 (2002).en_US
dc.identifier.citedreferenceN. Bouarissa, Mater. Sci. Eng., B 100, 280 (2003).en_US
dc.identifier.citedreferenceA. E. Merad, H. Aourag, B. Khelifa, C. Mathieu, and G. Merad, Superlattices Microstruct. 30, 241 (2001).en_US
dc.identifier.citedreferenceP. C. Kelires, Appl. Surf. Sci. 102, 12 (1996).en_US
dc.identifier.citedreferenceH. Shtrikman (private communication).en_US
dc.identifier.citedreferenceD. W. Gotthold, S. Govindaraju, T. Mattord, A. L. Holmes, and B. G. Streetman, J. Vac. Sci. Technol. A 18, 461 (2000).en_US
dc.identifier.citedreferenceJ. A. Floro, E. Chason, S. R. Lee, R. D. Twesten, R. Q. Hwang, and L. B. Freund, J. Electron. Mater. 26, 969 (1997).en_US
dc.identifier.citedreferenceG. G. Stoney, Proc. R. Soc. London, Ser. A 82, 172 (1909).en_US
dc.identifier.citedreferenceK. Kim, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B 53, 16310 (1996).en_US
dc.identifier.citedreferenceO. Madelung, Semiconductors-Basic Data, 2nd rev. ed. (Springer, Berlin, 1996), p. 105.en_US
dc.identifier.citedreferenceRocking Curve Analysis by Dynamical Simulation, Bede Scientific, Inc.en_US
dc.identifier.citedreferenceM. Wormington, C. Panaccione, K. M. Matney, and D. K. Bowen, Philos. Trans. R. Soc. London, Ser. A 357, 2827 (1999).en_US
dc.identifier.citedreferenceM. Reason, H. A. McKay, W. Ye, S. Hanson, R. S. Goldman, and V. Rotberg, Appl. Phys. Lett. 85, 1692 (2004).en_US
dc.identifier.citedreferenceR. E. Martinez, W. M. Augustyniak, and J. A. Golovchenko, Phys. Rev. Lett. 64, 1035 (1990).en_US
dc.identifier.citedreferenceA. J. Schell-Sorokin and R. M. Tromp, Phys. Rev. Lett. 64, 1039 (1990).en_US
dc.identifier.citedreferenceJ. P. Silveira and F. Briones, J. Cryst. Growth 202, 113 (1999).en_US
dc.identifier.citedreferenceD.K. Bowen and B.K. Tanner, High Resolution X-ray Diffractometry and Topography (Taylor & Francis, London, 1998), pp. 50–60.en_US
dc.identifier.citedreferenceS. Thomas, S. White, P. R. Chalker, T. J. Bullough, and T. B. Joyce, J. Mater. Sci.: Mater. Electron. 13, 525 (2002).en_US
dc.identifier.citedreferenceG. Wagner, Cryst. Res. Technol. 33, 383 (1998).en_US
dc.identifier.citedreferenceB. C. De Cooman and C. B. Carter, Acta Metall. 37, 2765 (1989).en_US
dc.identifier.citedreferenceL. Vegard, Z. Phys. 5, 17 (1921).en_US
dc.identifier.citedreferenceL. G. Ferreira, S.-H. Wei, and A. Zunger, Phys. Rev. B 40, 3197 (1989).en_US
dc.identifier.citedreferenceN. F. Chen, Y. Wang, H. He, and L. Lin, Phys. Rev. B 54, 8516 (1996).en_US
dc.identifier.citedreferenceC. Calmes, D. Bouchier, C. Clerc, and Y. Zheng, Appl. Surf. Sci. 224, 122 (2004).en_US
dc.identifier.citedreferenceH. J. Osten, Thin Solid Films 367, 101 (2000).en_US
dc.identifier.citedreferenceU. Tisch, E. Finkman, and J. Salzman, Phys. Status Solidi A 195, 528 (2003).en_US
dc.identifier.citedreferenceA. Khan, N. Nelson, J. A. Griffin, D. J. Smith, T. Steiner, and S. N. Mohammad, Solid-State Electron. 48, 291 (2004).en_US
dc.identifier.citedreferenceM. Ferhat, Phys. Status Solidi B 241, R38 (2004).en_US
dc.identifier.citedreferenceL. H. Robins, J. T. Armstrong, R. B. Marinenko, A. J. Paul, J. G. Pellegrino, and K. A. Bertness, J. Appl. Phys. 93, 3747 (2003).en_US
dc.identifier.citedreferenceN. Bouarissa and H. Aourag, Phys. Status Solidi B 199, 403 (1997).en_US
dc.identifier.citedreferenceP. R. C. Kent, L. Bellaiche, and A. Zunger, Semicond. Sci. Technol. 17, 851 (2002).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.