Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems
dc.contributor.author | da Silva, Luciana W. | en_US |
dc.contributor.author | Kaviany, Massoud | en_US |
dc.contributor.author | Uher, Ctirad | en_US |
dc.date.accessioned | 2011-11-15T16:04:17Z | |
dc.date.available | 2011-11-15T16:04:17Z | |
dc.date.issued | 2005-06-01 | en_US |
dc.identifier.citation | da Silva, Luciana W.; Kaviany, Massoud; Uher, Ctirad (2005). "Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems." Journal of Applied Physics 97(11): 114903-114903-10. <http://hdl.handle.net/2027.42/87588> | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/87588 | |
dc.description.abstract | Coevaporated bismuth-tellurium and antimony-tellurium films were fabricated under various deposition conditions (controlled evaporation rates of individual species, substrate temperature, and substrate material), and their thermoelectric (TE) properties (Seebeck coefficient, electrical resistivity, and carrier concentration) were measured in search of optimal TE performance. The tellurium atomic concentration was varied from 48% to 74%, the substrate temperature ranged from 130 to 300 °C, and glass, mica, magnesium oxide, and sapphire substrates were used. The chemical composition and crystal structure of the films were recorded (using microprobe and x-ray diffractometer, respectively), analyzed, and compared with available standard Bi2Te3Bi2Te3 and Sb2Te3Sb2Te3 single-crystal samples. High-performance TE films had tellurium atomic concentration around 60% and were deposited at a substrate temperature between 260 and 270 °C. | en_US |
dc.publisher | The American Institute of Physics | en_US |
dc.rights | © The American Institute of Physics | en_US |
dc.title | Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Physics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | University of Michigan, Ann Arbor, Michigan 48109 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/87588/2/114903_1.pdf | |
dc.identifier.doi | 10.1063/1.1914948 | en_US |
dc.identifier.source | Journal of Applied Physics | en_US |
dc.identifier.citedreference | D. A. Wright, Nature (London) 181, 834 (1958). | en_US |
dc.identifier.citedreference | R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature (London) 413, 597 (2001). | en_US |
dc.identifier.citedreference | H. Zou, D. M. Rowe, and S. G. K. Williams, Thin Solid Films 408, 270 (2002). | en_US |
dc.identifier.citedreference | J.R. Lim, G.J. Snyder, C.-K. Huang, J.A. Herman, M.A. Ryan, and J.-P. Fleurial, Thermoelectric Microdevice Fabrication Process and Evaluation at the Jet Propulsion Laboratory (JPL), Proceedings of the 21st International Conference on Thermoelectrics, Long Beach, California, (2002) (unpublished), pp. 535–539. | en_US |
dc.identifier.citedreference | H. Böttner et al., J. Microelectromech. Syst. 13, 414 (2004). | en_US |
dc.identifier.citedreference | H. Böttner (private communication). | en_US |
dc.identifier.citedreference | T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, Science 297, 2229 (2002). | en_US |
dc.identifier.citedreference | A. Majumdar, Science 303, 777 (2004). | en_US |
dc.identifier.citedreference | D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004). | en_US |
dc.identifier.citedreference | L. W. da Silva and M. Kaviany, Int. J. Heat Mass Transfer 47, 2417 (2004). | en_US |
dc.identifier.citedreference | L.W. da Silva and M. Kaviany, J. Microelectromech. Syst. (accepted for publication). | en_US |
dc.identifier.citedreference | C. F. Gallo, B. S. Chandrasekhar, and P. H. Sutter, J. Appl. Phys. 34, 144 (1963). | en_US |
dc.identifier.citedreference | Joint Committee on Powder Diffraction Standards (JCPDS), Powder Diffraction File, Card Nos. 15-874 and 15-863, Pennsylvania (1983). | en_US |
dc.identifier.citedreference | H. Scherrer and S. Scherrer, CRC Handbook of Thermoelectrics, edited by D. M. Rowe (CRC, Boca Raton, FL, 1995), p. 211. | en_US |
dc.identifier.citedreference | V. A. Kulbachinskii et al., Phys. Rev. B 52, 10915 (1995). | en_US |
dc.identifier.citedreference | M. Stordeur, CRC Handbook of Thermoelectrics, edited by D. M. Rowe (CRC, Boca Raton, FL, 1995), p. 239. | en_US |
dc.owningcollname | Physics, Department of |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.