Show simple item record

Effects of buffer layers on the structural and electronic properties of InSbInSb films

dc.contributor.authorWeng, X.en_US
dc.contributor.authorRudawski, N. G.en_US
dc.contributor.authorWang, P. T.en_US
dc.contributor.authorGoldman, R. S.en_US
dc.contributor.authorPartin, D. L.en_US
dc.contributor.authorHeremans, J. P.en_US
dc.date.accessioned2011-11-15T16:05:01Z
dc.date.available2011-11-15T16:05:01Z
dc.date.issued2005-02-15en_US
dc.identifier.citationWeng, X.; Rudawski, N. G.; Wang, P. T.; Goldman, R. S.; Partin, D. L.; Heremans, J. (2005). "Effects of buffer layers on the structural and electronic properties of InSbInSb films." Journal of Applied Physics 97(4): 043713-043713-7. <http://hdl.handle.net/2027.42/87622>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87622
dc.description.abstractWe have investigated the effects of various buffer layers on the structural and electronic properties of nn-doped InSbInSb films. We find a significant decrease in room-temperature electron mobility of InSbInSb films grown on low-misfit GaSbGaSb buffers, and a significant increase in room-temperature electron mobility of InSbInSb films grown on high-misfit InAlSbInAlSb or step-graded GaSb+InAlSbGaSb+InAlSb buffers, in comparison with those grown directly on GaAsGaAs. Plan-view transmission electron microscopy (TEM) indicates a significant increase in threading dislocation density for InSbInSb films grown on the low-misfit buffers, and a significant decrease in threading dislocation density for InSbInSb films grown on high-misfit or step-graded buffers, in comparison with those grown directly on GaAsGaAs. Cross-sectional TEM reveals the role of the film/buffer interfaces in the nucleation (filtering) of threading dislocations for the low-misfit (high-misfit and step-graded) buffers. A quantitative analysis of electron mobility and carrier-concentration dependence on threading dislocation density suggests that electron scattering from the lattice dilation associated with threading dislocations has a stronger effect on electron mobility than electron scattering from the depletion potential surrounding the dislocations. Furthermore, while lattice dilation is the predominant mobility-limiting factor in these nn-doped InSbInSb films, ionized impurity scattering associated with dopants also plays a role in limiting the electron mobility.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffects of buffer layers on the structural and electronic properties of InSbInSb filmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationumDelphi Research and Development Center, Warren, Michigan 48090-9055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87622/2/043713_1.pdf
dc.identifier.doi10.1063/1.1841466en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. Heremans, J. Phys. D 26, 1149 (1993).en_US
dc.identifier.citedreferenceX. Weng, R. S. Goldman, D. L. Partin, and J. P. Heremans, J. Appl. Phys. 88, 6276 (2000).en_US
dc.identifier.citedreferenceD. L. Partin, J. Heremans, and C. M. Thrush, J. Vac. Sci. Technol. B 17, 1267 (1999).en_US
dc.identifier.citedreferenceR. M. Biefeld and J. D. Phillips, J. Cryst. Growth 209, 567 (2000).en_US
dc.identifier.citedreferenceT. Sato, M. Akabori, and S. Yamada, Physica E (Amsterdam) 21, 615 (2004).en_US
dc.identifier.citedreferenceM. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Vol. 1 (World Scientific, Singapore, 1996).en_US
dc.identifier.citedreferenceN. Bertru, O. Brandt, M. Wassermeier, and K. Ploog, Appl. Phys. Lett. 68, 31 (1996).en_US
dc.identifier.citedreferenceP. Möck, G. R. Booker, N. J. Mason, R. J. Nicholas, E. Aphandéry, T. Topuria, and N. D. Browning, Mater. Sci. Eng., B 80, 112 (2001).en_US
dc.identifier.citedreferenceA. F. Tsatsul’nikov et al., Semiconductors 33, 886 (1999).en_US
dc.identifier.citedreferenceL. Q. Qian and B. W. Wessels, Appl. Phys. Lett. 63, 628 (1993).en_US
dc.identifier.citedreferenceD. L. Partin, J. Heremans, and C. M. Thrush, J. Appl. Phys. 71, 2328 (1992).en_US
dc.identifier.citedreferenceD. L. Partin, J. Heremans, and C. M. Thrush, J. Cryst. Growth 175/176, 860 (1997).en_US
dc.identifier.citedreferenceG. S. Lee, P. E. Thompson, J. L. Davis, J. P. Omaggio, and W. A. Schmidt, Solid-State Electron. 36, 387 (1993).en_US
dc.identifier.citedreferenceD. L. Partin, J. Heremans, and C. M. Thrush, Sens. Actuators, A 69, 39 (1998).en_US
dc.identifier.citedreferenceD.B. Williams and C. Barry Carter, Transmission Electron Microscopy (Plenum, New York, 1996), p. 321.en_US
dc.identifier.citedreferenceL. J. van der Pauw, Philips Res. Rep. 13, 1 (1958).en_US
dc.identifier.citedreferenceS. D. Parker et al., Semicond. Sci. Technol. 4, 663 (1989).en_US
dc.identifier.citedreferenceX. Zhang, A. E. Staton-Bevan, D. W. Pashley, S. D. Parker, R. Droopad, R. L. Williams, and R. C. Newman, J. Appl. Phys. 67, 800 (1990).en_US
dc.identifier.citedreferenceD. Cherns and M. J. Stowell, Scr. Metall. 7, 489 (1973).en_US
dc.identifier.citedreferenceK. Yagi, K. Takayanagi, K. Kobayashi, and G. Honjo, J. Cryst. Growth 9, 84 (1971).en_US
dc.identifier.citedreferenceF. K. LeGoues, B. S. Meyerson, and J. F. Morar, Phys. Rev. Lett. 66, 2903 (1991).en_US
dc.identifier.citedreferenceA. Lefebvre, C. Herbeaux, C. Bouillet, and J. Di Persio, Philos. Mag. Lett. 63, 23 (1991).en_US
dc.identifier.citedreferenceJ. Washburn and E. P. Kvam, Appl. Phys. Lett. 57, 1637 (1991).en_US
dc.identifier.citedreferenceR. Hull and J. C. Bean, Crit. Rev. Solid State Mater. Sci. 17, 507 (1992).en_US
dc.identifier.citedreferenceY. Chen, Z. Liliental-Weber, J. Washburn, J. F. Klem, and J. Y. Tsao, Appl. Phys. Lett. 66, 499 (1995).en_US
dc.identifier.citedreferenceP. M. Mooney, Mater. Sci. Eng., R. 17, 105 (1996).en_US
dc.identifier.citedreferenceE. A. Fitzgerald, Mater. Sci. Rep. 7, 87 (1991).en_US
dc.identifier.citedreferenceF. K. LeGoues, Phys. Rev. Lett. 72, 876 (1994).en_US
dc.identifier.citedreferenceB. Pödör, Phys. Status Solidi 16, K167 (1966).en_US
dc.identifier.citedreferenceD. L. Dexter and F. Seitz, Phys. Rev. 86, 964 (1952).en_US
dc.identifier.citedreferenceE. Litwin-Staszewska, W. Szymanska, and R. Piotzkowski, Phys. Status Solidi B 106, 551 (1981).en_US
dc.identifier.citedreferenceM. Neuberger, Handbook of Electronic Materials, Vol. 2 (IFI/Plenum, New York, 1971), p. 79.en_US
dc.identifier.citedreferenceJ. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).en_US
dc.identifier.citedreferenceC. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.