Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing
dc.contributor.author | Burton, Gregory C. | en_US |
dc.contributor.author | Dahm, Werner J. A. | en_US |
dc.date.accessioned | 2011-11-15T16:07:16Z | |
dc.date.available | 2011-11-15T16:07:16Z | |
dc.date.issued | 2005-07 | en_US |
dc.identifier.citation | Burton, Gregory C.; Dahm, Werner J. A. (2005). "Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing." Physics of Fluids 17(7): 075111-075111-16. <http://hdl.handle.net/2027.42/87721> | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/87721 | |
dc.description.abstract | Results are presented from a new approach to modeling the subgrid-scale stresses in large-eddy simulation of turbulent flows, based on explicit evaluation of the subgrid velocity components from a multifractal representation of the subgrid vorticity field. The approach is motivated by prior studies showing that the enstrophy field exhibits multifractal scale-similarity on inertial-range scales in high Reynolds number turbulence. A scale-invariant multiplicative cascade thus gives the spatial distribution of subgrid vorticity magnitudes within each resolved-scale cell, and an additive cascade gives the progressively isotropic decorrelation of subgrid vorticity orientations from the resolved scale ΔΔ to the viscous scale λνλν. The subgrid velocities are then obtained from Biot–Savart integrals over this subgrid vorticity field. The resulting subgrid velocity components become simple algebraic expressions in terms of resolved-scale quantities, which then allow explicit evaluation of the subgrid stresses τij*τij*. This new multifractal subgrid-scale model is shown in a priori tests to give good agreement for the filtered subgrid velocities, the subgrid stress components, and the subgrid energy production at both low (ReΔ ≈ 160)(ReΔ≈160) and high (ReΔ ≈ 2550)(ReΔ≈2550) resolved-scale Reynolds numbers. Implementing the model is no more computationally burdensome than traditional eddy-viscosity models. Moreover, evaluation of the subgrid stresses requires no explicit differentiation of the resolved velocity field and is therefore comparatively unaffected by discretization errors. | en_US |
dc.publisher | The American Institute of Physics | en_US |
dc.rights | © The American Institute of Physics | en_US |
dc.title | Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Physics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Laboratory for Turbulence and Combustion and W. M. Keck Laboratory for Computational Fluid Dynamics, Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2140 | en_US |
dc.contributor.affiliationum | Laboratory for Turbulence and Combustion (LTC), Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2140 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/87721/2/075111_1.pdf | |
dc.identifier.doi | 10.1063/1.1965058 | en_US |
dc.identifier.source | Physics of Fluids | en_US |
dc.identifier.citedreference | W.C. Reynolds, “The potential and limitations of direct and large eddy simulations,” in Whither Turbulence? Turbulence at the Crossroads, Lecture Notes in Physics, edited by J. L. Lumley (Springer-Verlag, Berlin, 1990), Vol. 357. | en_US |
dc.identifier.citedreference | J. Smagorinsky, “General circulation experiments with the primitive equations: I. The basic equations,” Mon. Weather Rev. 91, 99 (1963). | en_US |
dc.identifier.citedreference | P. Moin, “Advances in large eddy simulation methodology for complex flows,” Int. J. Heat Fluid Flow 23, 710 (2002). | en_US |
dc.identifier.citedreference | J. Jimenez, “Computing high-Reynolds-number turbulence: Will simulations ever replace experiments?” J. Turbul. 4, 022 (2003). | en_US |
dc.identifier.citedreference | P. Sagaut, Large-Eddy Simulation for Incompressible Flow (Springer-Verlag, Berlin, 2002). | en_US |
dc.identifier.citedreference | L.F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, 1922). | en_US |
dc.identifier.citedreference | M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids A 3, 1760 (1991). | en_US |
dc.identifier.citedreference | S. Ghosal, T. S. Lund, P. Moin, and K. Akselvoll, “A dynamic localization model for large-eddy simulation of turbulent flows,” J. Fluid Mech. 286, 229 (1995). | en_US |
dc.identifier.citedreference | U. Piomelli and J. H. Liu, “Large-eddy simulation of rotating channel flows using a localized dynamic-model,” Phys. Fluids 7, 839 (1995). | en_US |
dc.identifier.citedreference | C. Meneveau, T. Lund, and W. Cabot, “A Lagrangian dynamic subgrid-scale model of turbulence,” J. Fluid Mech. 319, 353 (1996). | en_US |
dc.identifier.citedreference | E. Bou-Zeid, C. Meneveau, and M. Parlange, “A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows,” Phys. Fluids 17, 025105 (2005). | en_US |
dc.identifier.citedreference | R. Kraichnan, “Eddy viscosity in two and three dimensions,” J. Atmos. Sci. 65, 575 (1976). | en_US |
dc.identifier.citedreference | O. Métais and M. Lesieur, “Spectral large-eddy simulation of isotropic and stably stratified turbulence,” J. Fluid Mech. 239, 157 (1992). | en_US |
dc.identifier.citedreference | J. Bardina, J.H. Ferziger, and W.C. Reynolds, “Improved subgrid models for large eddy simulation,” AIAA Paper 80-1357 (AIAA, Washington, D.C., 1980). | en_US |
dc.identifier.citedreference | J. Bardina, J.H. Ferziger, and W.C. Reynolds, “Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows,” Technical Report TF-19, Thermosciences Division, Stanford University, Stanford, CA (1983). | en_US |
dc.identifier.citedreference | Y. Zang, R. L. Street, and J. Koseff, “A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows,” Phys. Fluids A 5, 3186 (1993). | en_US |
dc.identifier.citedreference | J. G. Brasseur and C. H. Wei, “Interscale dynamics and local isotropy in high Reynolds number turbulence within triadic interactions,” Phys. Fluids 6, 842 (1994). | en_US |
dc.identifier.citedreference | B. J. Geurts, “Inverse modeling for large-eddy simulation,” Phys. Fluids 9, 3585 (1997). | en_US |
dc.identifier.citedreference | S. Stoltz and N. A. Adams, “An approximate deconvolution procedure for large-eddy simulation,” Phys. Fluids 11, 1699 (1999). | en_US |
dc.identifier.citedreference | J. A. Domaradzki and E. M. Saiki, “A subgrid-scale model based on the estimation of unresolved scales of turbulence,” Phys. Fluids 9, 2148 (1997). | en_US |
dc.identifier.citedreference | J. A. Domaradzki and K. Loh, “The subgrid-scale estimation model in the physical space representation,” Phys. Fluids 11, 2330 (1999). | en_US |
dc.identifier.citedreference | A. Scotti and C. Meneveau, “A fractal model for large eddy simulation of turbulent flow,” Physica D 127, 198 (1999). | en_US |
dc.identifier.citedreference | D. I. Pullin and P. G. Saffman, “Reynolds stresses and one-dimensional spectra for a vortex model of homogeneous anisotropic turbulence,” Phys. Fluids 6, 1787 (1994). | en_US |
dc.identifier.citedreference | A. Misra and D. I. Pullin, “A vortex-based subgrid stress model for large eddy simulation,” Phys. Fluids 9, 2443 (1997). | en_US |
dc.identifier.citedreference | J. Mansfield, O. Knio, and C. Meneveau, “A dynamic LES scheme for the vorticity transport equation: Formulation and a priori tests,” J. Comput. Phys. 145, 693 (1998). | en_US |
dc.identifier.citedreference | M. Farge, K. Schneider, and N. Kevlahan, “Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis,” Phys. Fluids 11, 2187 (1999). | en_US |
dc.identifier.citedreference | J. W. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,” J. Fluid Mech. 41, 453 (1970). | en_US |
dc.identifier.citedreference | A. Leonard, “Energy cascade in large-eddy simulations of turbulent fluid flows,” Adv. Geophys. 18A, 237 (1974). | en_US |
dc.identifier.citedreference | R. A. Clark, J. H. Ferziger, and W. C. Reynolds, “Evaluation of subgrid-scale models using an accurately simulated turbulent flow,” J. Fluid Mech. 91, 1 (1979). | en_US |
dc.identifier.citedreference | G. S. Winckelmans, A. A. Wray, O. V. Vasilyev, and H. Jeanmart, “Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term,” Phys. Fluids 13, 1385 (2001). | en_US |
dc.identifier.citedreference | C. Meneveau and K. R. Sreenivasan, “Simple multifractal cascade model for fully developed turbulence,” Phys. Rev. Lett. 59, 1424 (1987). | en_US |
dc.identifier.citedreference | C. Meneveau and K. R. Sreenivasan, “The multifractal nature of turbulent energy dissipation,” J. Fluid Mech. 224, 429 (1991). | en_US |
dc.identifier.citedreference | K. R. Sreenivasan, “Fractals and multifractals in fluid turbulence,” Annu. Rev. Fluid Mech. 23, 539 (1991). | en_US |
dc.identifier.citedreference | G. C. Burton and W. J. A. Dahm, “Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation,” Phys. Fluids 17, 075112 (2005). | en_US |
dc.identifier.citedreference | K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, New York, 1990). | en_US |
dc.identifier.citedreference | H. Peitgen, H. Jurgen, and D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer-Verlag, Berlin, 1992). | en_US |
dc.identifier.citedreference | C. Meneveau, “Analysis of turbulence in the orthonormal wavelet representation,” J. Fluid Mech. 232, 469 (1991). | en_US |
dc.identifier.citedreference | K. R. Sreenivasan and G. Stolovitzky, “Turbulent cascades,” J. Stat. Phys. 78, 311 (1995). | en_US |
dc.identifier.citedreference | R. R. Prasad, C. Meneveau, and K. R. Sreenivasan, “The multifractal nature of the dissipation field of passive scalars in fully turbulent flows,” Phys. Rev. Lett. 61, 74 (1988). | en_US |
dc.identifier.citedreference | K. R. Sreenivasan and R. R. Prasad, “New results on the fractal and multifractal structure of the large Schmidt number passive scalars in fully turbulent flows,” Physica D 38, 322 (1989). | en_US |
dc.identifier.citedreference | R. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part 3. Multifractal scaling,” J. Fluid Mech. 338, 127 (1997). | en_US |
dc.identifier.citedreference | R. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part 4. Effects of Reynolds and Schmidt numbers,” J. Fluid Mech. 377, 169 (1998). | en_US |
dc.identifier.citedreference | A. B. Chhabra and K. R. Sreenivasan, “Scale-invariant multiplier distributions in turbulence,” Phys. Rev. Lett. 68, 2762 (1992). | en_US |
dc.identifier.citedreference | G.C. Burton, “A multifractal subgrid-scale model for large-eddy simulation of turbulent flows,” Ph.D. dissertation, The University of Michigan, Ann Arbor, Michigan (2003). | en_US |
dc.identifier.citedreference | J. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. Part 2: Experimental results,” Phys. Fluids (submitted). | en_US |
dc.identifier.citedreference | S. Liu, C. Meneveau, and J. Katz, “On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet,” J. Fluid Mech. 275, 83 (1994). | en_US |
dc.identifier.citedreference | J. A. Langford and R. D. Moser, “Optimal LES formulations for isotropic turbulence,” J. Fluid Mech. 398, 321 (1999). | en_US |
dc.identifier.citedreference | U. Piomelli, W. H. Cabot, P. Moin, and S. Lee, “Subgrid-scale backscatter in turbulent and transitional flows,” Phys. Fluids A 3, 1766 (1991). | en_US |
dc.identifier.citedreference | D. Carati, G. S. Winckelmans, and H. Jeanmart, “On the modeling of the subgrid-scale and filtered stress tensors in large-eddy simulation,” J. Fluid Mech. 441, 119 (2001). | en_US |
dc.identifier.citedreference | J. Jimenez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, “The structure of intense vorticity in isotropic turbulence,” J. Fluid Mech. 255, 65 (1993). | en_US |
dc.identifier.citedreference | S. Ghosal, “An analysis of numerical errors in large-eddy simulations of turbulence,” J. Comput. Phys. 125, 187 (1996). | en_US |
dc.identifier.citedreference | S. Ghosal, “Mathematical and physical constraints on large-eddy simulation of turbulence,” AIAA J. 37, 425 (1999). | en_US |
dc.identifier.citedreference | A. G. Kravchenko and P. Moin, “On the effect of numerical errors in large eddy simulations of turbulent flows,” J. Comput. Phys. 131, 310 (1997). | en_US |
dc.identifier.citedreference | C. Fureby and G. Tabor, “Mathematical and physical constraints on large-eddy simulations,” Theor. Comput. Fluid Dyn. 9, 85 (1997). | en_US |
dc.identifier.citedreference | F. K. Chow and P. Moin, “A further study of numerical errors in large-eddy simulations,” J. Comput. Phys. 184, 366 (2003). | en_US |
dc.identifier.citedreference | K. A. Buch and W. J. A. Dahm, “Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc≫1Sc≫1,” J. Fluid Mech. 317, 21 (1996). | en_US |
dc.identifier.citedreference | K. A. Buch and W. J. A. Dahm, “Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc ≈ 1Sc≈1,” J. Fluid Mech. 364, 1 (1998). | en_US |
dc.owningcollname | Physics, Department of |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.