Show simple item record

Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing

dc.contributor.authorBurton, Gregory C.en_US
dc.contributor.authorDahm, Werner J. A.en_US
dc.date.accessioned2011-11-15T16:07:16Z
dc.date.available2011-11-15T16:07:16Z
dc.date.issued2005-07en_US
dc.identifier.citationBurton, Gregory C.; Dahm, Werner J. A. (2005). "Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing." Physics of Fluids 17(7): 075111-075111-16. <http://hdl.handle.net/2027.42/87721>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87721
dc.description.abstractResults are presented from a new approach to modeling the subgrid-scale stresses in large-eddy simulation of turbulent flows, based on explicit evaluation of the subgrid velocity components from a multifractal representation of the subgrid vorticity field. The approach is motivated by prior studies showing that the enstrophy field exhibits multifractal scale-similarity on inertial-range scales in high Reynolds number turbulence. A scale-invariant multiplicative cascade thus gives the spatial distribution of subgrid vorticity magnitudes within each resolved-scale cell, and an additive cascade gives the progressively isotropic decorrelation of subgrid vorticity orientations from the resolved scale ΔΔ to the viscous scale λνλν. The subgrid velocities are then obtained from Biot–Savart integrals over this subgrid vorticity field. The resulting subgrid velocity components become simple algebraic expressions in terms of resolved-scale quantities, which then allow explicit evaluation of the subgrid stresses τij*τij*. This new multifractal subgrid-scale model is shown in a priori tests to give good agreement for the filtered subgrid velocities, the subgrid stress components, and the subgrid energy production at both low (ReΔ ≈ 160)(ReΔ≈160) and high (ReΔ ≈ 2550)(ReΔ≈2550) resolved-scale Reynolds numbers. Implementing the model is no more computationally burdensome than traditional eddy-viscosity models. Moreover, evaluation of the subgrid stresses requires no explicit differentiation of the resolved velocity field and is therefore comparatively unaffected by discretization errors.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMultifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testingen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLaboratory for Turbulence and Combustion and W. M. Keck Laboratory for Computational Fluid Dynamics, Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.contributor.affiliationumLaboratory for Turbulence and Combustion (LTC), Department of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87721/2/075111_1.pdf
dc.identifier.doi10.1063/1.1965058en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceW.C. Reynolds, “The potential and limitations of direct and large eddy simulations,” in Whither Turbulence? Turbulence at the Crossroads, Lecture Notes in Physics, edited by J. L. Lumley (Springer-Verlag, Berlin, 1990), Vol. 357.en_US
dc.identifier.citedreferenceJ. Smagorinsky, “General circulation experiments with the primitive equations: I. The basic equations,” Mon. Weather Rev. 91, 99 (1963).en_US
dc.identifier.citedreferenceP. Moin, “Advances in large eddy simulation methodology for complex flows,” Int. J. Heat Fluid Flow 23, 710 (2002).en_US
dc.identifier.citedreferenceJ. Jimenez, “Computing high-Reynolds-number turbulence: Will simulations ever replace experiments?” J. Turbul. 4, 022 (2003).en_US
dc.identifier.citedreferenceP. Sagaut, Large-Eddy Simulation for Incompressible Flow (Springer-Verlag, Berlin, 2002).en_US
dc.identifier.citedreferenceL.F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, 1922).en_US
dc.identifier.citedreferenceM. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids A 3, 1760 (1991).en_US
dc.identifier.citedreferenceS. Ghosal, T. S. Lund, P. Moin, and K. Akselvoll, “A dynamic localization model for large-eddy simulation of turbulent flows,” J. Fluid Mech. 286, 229 (1995).en_US
dc.identifier.citedreferenceU. Piomelli and J. H. Liu, “Large-eddy simulation of rotating channel flows using a localized dynamic-model,” Phys. Fluids 7, 839 (1995).en_US
dc.identifier.citedreferenceC. Meneveau, T. Lund, and W. Cabot, “A Lagrangian dynamic subgrid-scale model of turbulence,” J. Fluid Mech. 319, 353 (1996).en_US
dc.identifier.citedreferenceE. Bou-Zeid, C. Meneveau, and M. Parlange, “A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows,” Phys. Fluids 17, 025105 (2005).en_US
dc.identifier.citedreferenceR. Kraichnan, “Eddy viscosity in two and three dimensions,” J. Atmos. Sci. 65, 575 (1976).en_US
dc.identifier.citedreferenceO. Métais and M. Lesieur, “Spectral large-eddy simulation of isotropic and stably stratified turbulence,” J. Fluid Mech. 239, 157 (1992).en_US
dc.identifier.citedreferenceJ. Bardina, J.H. Ferziger, and W.C. Reynolds, “Improved subgrid models for large eddy simulation,” AIAA Paper 80-1357 (AIAA, Washington, D.C., 1980).en_US
dc.identifier.citedreferenceJ. Bardina, J.H. Ferziger, and W.C. Reynolds, “Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows,” Technical Report TF-19, Thermosciences Division, Stanford University, Stanford, CA (1983).en_US
dc.identifier.citedreferenceY. Zang, R. L. Street, and J. Koseff, “A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows,” Phys. Fluids A 5, 3186 (1993).en_US
dc.identifier.citedreferenceJ. G. Brasseur and C. H. Wei, “Interscale dynamics and local isotropy in high Reynolds number turbulence within triadic interactions,” Phys. Fluids 6, 842 (1994).en_US
dc.identifier.citedreferenceB. J. Geurts, “Inverse modeling for large-eddy simulation,” Phys. Fluids 9, 3585 (1997).en_US
dc.identifier.citedreferenceS. Stoltz and N. A. Adams, “An approximate deconvolution procedure for large-eddy simulation,” Phys. Fluids 11, 1699 (1999).en_US
dc.identifier.citedreferenceJ. A. Domaradzki and E. M. Saiki, “A subgrid-scale model based on the estimation of unresolved scales of turbulence,” Phys. Fluids 9, 2148 (1997).en_US
dc.identifier.citedreferenceJ. A. Domaradzki and K. Loh, “The subgrid-scale estimation model in the physical space representation,” Phys. Fluids 11, 2330 (1999).en_US
dc.identifier.citedreferenceA. Scotti and C. Meneveau, “A fractal model for large eddy simulation of turbulent flow,” Physica D 127, 198 (1999).en_US
dc.identifier.citedreferenceD. I. Pullin and P. G. Saffman, “Reynolds stresses and one-dimensional spectra for a vortex model of homogeneous anisotropic turbulence,” Phys. Fluids 6, 1787 (1994).en_US
dc.identifier.citedreferenceA. Misra and D. I. Pullin, “A vortex-based subgrid stress model for large eddy simulation,” Phys. Fluids 9, 2443 (1997).en_US
dc.identifier.citedreferenceJ. Mansfield, O. Knio, and C. Meneveau, “A dynamic LES scheme for the vorticity transport equation: Formulation and a priori tests,” J. Comput. Phys. 145, 693 (1998).en_US
dc.identifier.citedreferenceM. Farge, K. Schneider, and N. Kevlahan, “Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis,” Phys. Fluids 11, 2187 (1999).en_US
dc.identifier.citedreferenceJ. W. Deardorff, “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,” J. Fluid Mech. 41, 453 (1970).en_US
dc.identifier.citedreferenceA. Leonard, “Energy cascade in large-eddy simulations of turbulent fluid flows,” Adv. Geophys. 18A, 237 (1974).en_US
dc.identifier.citedreferenceR. A. Clark, J. H. Ferziger, and W. C. Reynolds, “Evaluation of subgrid-scale models using an accurately simulated turbulent flow,” J. Fluid Mech. 91, 1 (1979).en_US
dc.identifier.citedreferenceG. S. Winckelmans, A. A. Wray, O. V. Vasilyev, and H. Jeanmart, “Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term,” Phys. Fluids 13, 1385 (2001).en_US
dc.identifier.citedreferenceC. Meneveau and K. R. Sreenivasan, “Simple multifractal cascade model for fully developed turbulence,” Phys. Rev. Lett. 59, 1424 (1987).en_US
dc.identifier.citedreferenceC. Meneveau and K. R. Sreenivasan, “The multifractal nature of turbulent energy dissipation,” J. Fluid Mech. 224, 429 (1991).en_US
dc.identifier.citedreferenceK. R. Sreenivasan, “Fractals and multifractals in fluid turbulence,” Annu. Rev. Fluid Mech. 23, 539 (1991).en_US
dc.identifier.citedreferenceG. C. Burton and W. J. A. Dahm, “Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation,” Phys. Fluids 17, 075112 (2005).en_US
dc.identifier.citedreferenceK. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, New York, 1990).en_US
dc.identifier.citedreferenceH. Peitgen, H. Jurgen, and D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer-Verlag, Berlin, 1992).en_US
dc.identifier.citedreferenceC. Meneveau, “Analysis of turbulence in the orthonormal wavelet representation,” J. Fluid Mech. 232, 469 (1991).en_US
dc.identifier.citedreferenceK. R. Sreenivasan and G. Stolovitzky, “Turbulent cascades,” J. Stat. Phys. 78, 311 (1995).en_US
dc.identifier.citedreferenceR. R. Prasad, C. Meneveau, and K. R. Sreenivasan, “The multifractal nature of the dissipation field of passive scalars in fully turbulent flows,” Phys. Rev. Lett. 61, 74 (1988).en_US
dc.identifier.citedreferenceK. R. Sreenivasan and R. R. Prasad, “New results on the fractal and multifractal structure of the large Schmidt number passive scalars in fully turbulent flows,” Physica D 38, 322 (1989).en_US
dc.identifier.citedreferenceR. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part 3. Multifractal scaling,” J. Fluid Mech. 338, 127 (1997).en_US
dc.identifier.citedreferenceR. D. Frederiksen, W. J. A. Dahm, and D. R. Dowling, “Experimental assessment of fractal scale similarity in turbulent flows. Part 4. Effects of Reynolds and Schmidt numbers,” J. Fluid Mech. 377, 169 (1998).en_US
dc.identifier.citedreferenceA. B. Chhabra and K. R. Sreenivasan, “Scale-invariant multiplier distributions in turbulence,” Phys. Rev. Lett. 68, 2762 (1992).en_US
dc.identifier.citedreferenceG.C. Burton, “A multifractal subgrid-scale model for large-eddy simulation of turbulent flows,” Ph.D. dissertation, The University of Michigan, Ann Arbor, Michigan (2003).en_US
dc.identifier.citedreferenceJ. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. Part 2: Experimental results,” Phys. Fluids (submitted).en_US
dc.identifier.citedreferenceS. Liu, C. Meneveau, and J. Katz, “On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet,” J. Fluid Mech. 275, 83 (1994).en_US
dc.identifier.citedreferenceJ. A. Langford and R. D. Moser, “Optimal LES formulations for isotropic turbulence,” J. Fluid Mech. 398, 321 (1999).en_US
dc.identifier.citedreferenceU. Piomelli, W. H. Cabot, P. Moin, and S. Lee, “Subgrid-scale backscatter in turbulent and transitional flows,” Phys. Fluids A 3, 1766 (1991).en_US
dc.identifier.citedreferenceD. Carati, G. S. Winckelmans, and H. Jeanmart, “On the modeling of the subgrid-scale and filtered stress tensors in large-eddy simulation,” J. Fluid Mech. 441, 119 (2001).en_US
dc.identifier.citedreferenceJ. Jimenez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, “The structure of intense vorticity in isotropic turbulence,” J. Fluid Mech. 255, 65 (1993).en_US
dc.identifier.citedreferenceS. Ghosal, “An analysis of numerical errors in large-eddy simulations of turbulence,” J. Comput. Phys. 125, 187 (1996).en_US
dc.identifier.citedreferenceS. Ghosal, “Mathematical and physical constraints on large-eddy simulation of turbulence,” AIAA J. 37, 425 (1999).en_US
dc.identifier.citedreferenceA. G. Kravchenko and P. Moin, “On the effect of numerical errors in large eddy simulations of turbulent flows,” J. Comput. Phys. 131, 310 (1997).en_US
dc.identifier.citedreferenceC. Fureby and G. Tabor, “Mathematical and physical constraints on large-eddy simulations,” Theor. Comput. Fluid Dyn. 9, 85 (1997).en_US
dc.identifier.citedreferenceF. K. Chow and P. Moin, “A further study of numerical errors in large-eddy simulations,” J. Comput. Phys. 184, 366 (2003).en_US
dc.identifier.citedreferenceK. A. Buch and W. J. A. Dahm, “Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc≫1Sc≫1,” J. Fluid Mech. 317, 21 (1996).en_US
dc.identifier.citedreferenceK. A. Buch and W. J. A. Dahm, “Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc ≈ 1Sc≈1,” J. Fluid Mech. 364, 1 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.