Show simple item record

Dislocation dynamics in strain relaxation in GaAsSb/GaAsGaAsSb∕GaAs heteroepitaxy

dc.contributor.authorPérez Rodríguez, B.en_US
dc.contributor.authorMirecki-Millunchick, Joannaen_US
dc.date.accessioned2011-11-15T16:07:17Z
dc.date.available2011-11-15T16:07:17Z
dc.date.issued2006-08-15en_US
dc.identifier.citationPérez Rodríguez, B.; Mirecki Millunchick, J. (2006). "Dislocation dynamics in strain relaxation in GaAsSb/GaAsGaAsSb∕GaAs heteroepitaxy." Journal of Applied Physics 100(4): 044503-044503-7. <http://hdl.handle.net/2027.42/87722>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87722
dc.description.abstractThe real-time stress evolution has been investigated during molecular-beam epitaxial growth of GaAs1−xSbx/GaAsGaAs1−xSbx∕GaAs metamorphic buffer. These real-time data were obtained using an in situ multibeam optical sensor measurement and has been combined with detailed analysis of data obtained from x-ray diffraction, transmission electron microscopy, and atomic force microscopy. We compare the strain relaxation of two different compositions of GaAs1−xSbxGaAs1−xSbx, and correlated the development of dislocation structure and morphology. Several distinct stages of the strain relaxation were observed during growth, which can be separated in three main regimes: pseudomorphic growth, fast strain relaxation, and saturation. Transmission electron microscopy data show that GaAs0.5Sb0.5GaAs0.5Sb0.5 buffer layers have a larger fraction of pure-edge dislocations that arise during the earliest stages of growth. This could have a significant influence in the fabrication of buffer layers, since pure edges are favored over the threading dislocations. The strain relaxation profile for each film was modeled using a modified model of Dodson and Tsao [Phys. Rev. B 38, 12383 (1988)] that takes into account the elastic interactions of misfit dislocations. The model results agree with the experimental data and show that interaction of misfit dislocations is responsible for the large residual stress. In addition, following the description developed by Dodson and Tsao [Phys. Rev. B 38, 12383 (1988)] for the rate of dislocation multiplication, we were able to determine the line density of threading dislocations from the experimental data. This has a potential application in the design of metamorphic buffer layers because our observations are made in real time on individual growth, without the need of external characterization to measure the dislocation density.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDislocation dynamics in strain relaxation in GaAsSb/GaAsGaAsSb∕GaAs heteroepitaxyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumRandall Laboratory, Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87722/2/044503_1.pdf
dc.identifier.doi10.1063/1.2245206en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceY. Cordier, J. M. Chauveau, D. Ferre, and J. Dipersio, J. Vac. Sci. Technol. B 18, 2513 (2000).en_US
dc.identifier.citedreferenceJ. A. Floro, E. Chason, and S. R. Lee, Mater. Res. Soc. Symp. Proc. 406, 491 (1996).en_US
dc.identifier.citedreferenceG. Wedler, J. Walz, T. Hesjedal, E. Chilla, and R. Koch, Phys. Rev. Lett. 80, 2382 (1998).en_US
dc.identifier.citedreferenceG. Wedler, B. Wassermann, R. Nötzel, and R. Koch, Appl. Phys. Lett. 78, 1270 (2001).en_US
dc.identifier.citedreferenceJ. M. Garcia, J. P. Silveria, and F. Briones, Appl. Phys. Lett. 77, 409 (2000).en_US
dc.identifier.citedreferenceE. Chason, Y. Yin, K. Tetz, R. Beresford, L. B. Freund, M. Ujue Gonzalez, and J. A. Floro, Mater. Res. Soc. Symp. Proc. 583, 167 (2000).en_US
dc.identifier.citedreferenceA. G. Cullis, A. J. Pidduck, and M. T. Emeny, Phys. Rev. Lett. 75, 2368 (1995).en_US
dc.identifier.citedreferenceA. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, J. Appl. Phys. 91, 1933 (2002).en_US
dc.identifier.citedreferenceR. Kaspi, W. T. Cooley, and K. R. Evans, J. Cryst. Growth, 173, 5 (1997).en_US
dc.identifier.citedreferenceA. Bosacchi et al., J. Cryst. Growth 201/201, 858 (1999).en_US
dc.identifier.citedreferenceR. Beresford, J. Yin, K. Tetz, and E. Chason, J. Vac. Sci. Technol. B 18, 1431 (2000).en_US
dc.identifier.citedreferenceB. Pérez Rodríguez and J. Mirecki Millunchick, J. Cryst. Growth 264, 64 (2004).en_US
dc.identifier.citedreferenceR. Beresford, K. Tetz, E. Chason, and M. U. González, J. Vac. Sci. Technol. B 19, 1572 (2001).en_US
dc.identifier.citedreferenceM. Adamcyk, J. H. Schmid, T. Tiedje, A. Koveshnikov, A. Chahboun, V. Fink, and K. L. Kavanagh, Appl. Phys. Lett. 80, 4357 (2002).en_US
dc.identifier.citedreferenceJ.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, J. Appl. Phys. 85, 6421 (1999).en_US
dc.identifier.citedreferenceV. Kumar and B. S. R. Sastry, Cryst. Res. Technol. 36, 565 (2001).en_US
dc.identifier.citedreferenceA. Zubrilov, in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur (Wiley, New York, 2001), pp. 49–66.en_US
dc.identifier.citedreferenceN. J. Kadhim and D. Mukherjee, J. Mater. Sci. Lett. 17, 595 (1998).en_US
dc.identifier.citedreferenceN. J. Kadhim and D. Mukherjee, Vacuum 55, 249 (1999).en_US
dc.identifier.citedreferenceA. Trampert, E. Tournie, and K. H. Ploog, Appl. Phys. Lett. 66, 2265 (1995).en_US
dc.identifier.citedreferenceW. Qian, M. Skowronski, R. Kaspi, M. De Graef, and V. P. Dravid, J. Appl. Phys. 81, 7268 (1997).en_US
dc.identifier.citedreferenceS. B. Samavedam and E. A. Fitzgerald, J. Appl. Phys. 81, 3108 (1997).en_US
dc.identifier.citedreferenceJ. S. Speck, M. A. Brewer, G. Beltz, A. E. Romanov, and W. Pompe, J. Appl. Phys. 80, 3808 (1996).en_US
dc.identifier.citedreferenceB. W. Dodson and J. Y. Tsao, Phys. Rev. B 38, 12383 (1988).en_US
dc.identifier.citedreferenceE. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi, and M. T. Bulsara, Mater. Sci. Eng., B 67, 53 (1999).en_US
dc.identifier.citedreferenceB. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).en_US
dc.identifier.citedreferenceJ. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).en_US
dc.identifier.citedreferenceA. Fischer, H. Kühne, M. Eichler, F. Holländer, and H. Richter, Phys. Rev. B 54, 8761 (1996).en_US
dc.identifier.citedreferenceR. Beresford, C. Lynch, and E. Chason, J. Cryst. Growth 251, 106 (2003).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.