Show simple item record

Organic light-emitting device on a scanning probe cantilever

dc.contributor.authorAn, Kwang H.en_US
dc.contributor.authorO’Connor, Brendanen_US
dc.contributor.authorPipe, Kevin P.en_US
dc.contributor.authorZhao, Yiyingen_US
dc.contributor.authorShtein, Maxen_US
dc.date.accessioned2011-11-15T16:08:46Z
dc.date.available2011-11-15T16:08:46Z
dc.date.issued2006-09-11en_US
dc.identifier.citationAn, Kwang H.; O’Connor, Brendan; Pipe, Kevin P.; Zhao, Yiying; Shtein, Max (2006). "Organic light-emitting device on a scanning probe cantilever." Applied Physics Letters 89(11): 111117-111117-3. <http://hdl.handle.net/2027.42/87792>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87792
dc.description.abstractOrganic light-emitting devices (OLEDs) were fabricated on scanning probe cantilevers using a combination of thermally evaporated molecular organic compounds and metallic electrodes. Ion beam milling was used to define the emissive region in the shape of a ring having a diameter of less than 5 μm5μm and a narrow width. Stable light emission was observed from the device at forward bias, with a current-voltage response similar to that of archetypal OLEDs. Based on this device, a novel electrically pumped scanning optical microscopy tool is suggested.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleOrganic light-emitting device on a scanning probe cantileveren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2125en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2125en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87792/2/111117_1.pdf
dc.identifier.doi10.1063/1.2353816en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceE. Betzig and J. K. Trautman, Science 257, 189 (1992).en_US
dc.identifier.citedreferenceR. Bachelot, G. Lerondel, S. Blaize, S. Aubert, A. Bruyant, and P. Royer, Microsc. Res. Tech. 64, 441 (2004).en_US
dc.identifier.citedreferenceW. Dickson, A. Stashkevitch, J. Ben Youssef, S. Takahashi, and A. V. Zayats, Opt. Commun. 250, 126 (2005).en_US
dc.identifier.citedreferenceD. Mulin, C. Girard, G. C. Des Francs, M. Spajer, and D. Courjon, J. Microsc. 202, 110 (2001).en_US
dc.identifier.citedreferenceS. I. Bozhevolnyi, V. S. Volkov, T. Sondergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, Phys. Rev. B 66, 235204 (2002).en_US
dc.identifier.citedreferenceM. Denyer, R. Micheletto, K. Nakajima, M. Hara, and S. Okazaki, J. Nanosci. Nanotechnol. 3, 496 (2003).en_US
dc.identifier.citedreferenceE. Betzig and R. J. Chichester, Science 262, 1422 (1993).en_US
dc.identifier.citedreferenceP. Grabiec, J. Radojewski, M. Zaborowski, K. Domanski, T. Schenkel, and I. W. Rangelow, J. Vac. Sci. Technol. B 22, 16 (2004).en_US
dc.identifier.citedreferenceC. Mihalcea, W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, Appl. Phys. Lett. 68, 3531 (1996).en_US
dc.identifier.citedreferenceS. S. Choi, M. S. Song, D. W. Kim, and M. J. Park, Appl. Phys. A: Mater. Sci. Process. 79, 1189 (2004).en_US
dc.identifier.citedreferenceM. Sasaki, K. Tanaka, and K. Hane, Jpn. J. Appl. Phys., Part 1 39, 7150 (2000).en_US
dc.identifier.citedreferenceS. Heisig, O. Rudow, and E. Oesterschulze, Appl. Phys. Lett. 77, 1071 (2000).en_US
dc.identifier.citedreferenceH. Kroemer, J. Cryst. Growth 81, 193 (1987).en_US
dc.identifier.citedreferenceN. Iwata, T. Wakayama, and S. Yamada, Sens. Actuators, A 111, 26 (2004).en_US
dc.identifier.citedreferenceP. E. Burrows, Y. Zhang, E. I. Haskal, and S. R. Forrest, Appl. Phys. Lett. 61, 2417 (1992).en_US
dc.identifier.citedreferenceS. R. Forrest, Chem. Rev. (Washington, D.C.) 97, 1793 (1997).en_US
dc.identifier.citedreferenceD. Suh and H. H. Lee, J. Vac. Sci. Technol. B 22, 1123 (2004).en_US
dc.identifier.citedreferenceH. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, Nano Lett. 5, 2485 (2005).en_US
dc.identifier.citedreferenceF. A. Boroumand, P. W. Fry, and D. G. Lidzey, Nano Lett. 5, 67 (2005).en_US
dc.identifier.citedreferenceA. Wang, L. Kymissis, V. Bulovic, and A. I. Akinwande, IEEE Trans. Electron Devices 53, 9 (2006).en_US
dc.identifier.citedreferenceE. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Gruner, Nano Lett. 5, 757 (2005).en_US
dc.identifier.citedreferenceM. A. Baldo and S. R. Forrest, Phys. Rev. B 64, 085201 (2001).en_US
dc.identifier.citedreferenceH. Shiba, M. Haraguchi, and M. Fukui, J. Phys. Soc. Jpn. 63, 1400 (1994).en_US
dc.identifier.citedreferenceR. Zia, M. D. Selker, and M. L. Brongersma, Phys. Rev. B 71, 165431 (2005).en_US
dc.identifier.citedreferenceP. Andrew and W. L. Barnes, Science 306, 1002 (2004).en_US
dc.identifier.citedreferenceU. C. Fischer and D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989).en_US
dc.identifier.citedreferenceA. A. Shoustikov, Y. J. You, and M. E. Thompson, IEEE J. Sel. Top. Quantum Electron. 4, 3 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.