Show simple item record

Analysis of the reduced thermal conductivity in InGaAs/GaAsInGaAs∕GaAs quantum dot lasers from chirp characteristics

dc.contributor.authorTan, Huaen_US
dc.contributor.authorKamath, Kishore K.en_US
dc.contributor.authorMi, Zetianen_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.contributor.authorKlotzkin, Daviden_US
dc.date.accessioned2011-11-15T16:08:49Z
dc.date.available2011-11-15T16:08:49Z
dc.date.issued2006-09-18en_US
dc.identifier.citationTan, Hua; Kamath, Kishore K.; Mi, Zetian; Bhattacharya, Pallab; Klotzkin, David (2006). "Analysis of the reduced thermal conductivity in InGaAs/GaAsInGaAs∕GaAs quantum dot lasers from chirp characteristics." Applied Physics Letters 89(12): 121116-121116-3. <http://hdl.handle.net/2027.42/87794>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87794
dc.description.abstractThe thermal conductivity of self-organized quantum dot (QD) active regions is estimated by measurements of wavelength chirp with injected current as a function of the current pulse duty cycle both below and above threshold. A simple model which separates out thermal and charge carrier chirps is used to estimate the thermal conductivity of the QD active region. With this model, the thermal conductivity of the InGaAs QD active region is estimated to be ∼ 0.1 W/m K∼0.1W∕mK, about two orders of magnitude less than that of the bulk material. This is consistent with theoretical predictions of the reduced thermal conductivity of QD regions.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleAnalysis of the reduced thermal conductivity in InGaAs/GaAsInGaAs∕GaAs quantum dot lasers from chirp characteristicsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.contributor.affiliationotherElectrical & Computer Engineering and Computer Science Department, University of Cincinnati, Cincinnati, Ohio 45221-0030en_US
dc.contributor.affiliationotherElectrical & Computer Engineering and Computer Science Department, University of Cincinnati, Cincinnati, Ohio 45221-0030en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87794/2/121116_1.pdf
dc.identifier.doi10.1063/1.2354415en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceM. Grundmann, Physica E (Amsterdam) 5, 167 (2000).en_US
dc.identifier.citedreferenceT. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, IEEE Photonics Technol. Lett. 11, 1527 (1999).en_US
dc.identifier.citedreferenceS. Fathpour, P. Bhattacharya, S. Pradhan, and S. Ghosh, Electron. Lett. 39, 1443 (2003).en_US
dc.identifier.citedreferenceA. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, Appl. Phys. Lett. 84, 1058 (2004).en_US
dc.identifier.citedreferenceP. Kondratko, S. Chuang, G. Walter, T. Chunk, and N. Holynak, Appl. Phys. Lett. 83, 4818 (2003).en_US
dc.identifier.citedreferenceP. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, IEEE J. Sel. Top. Quantum Electron. 6, 426 (2000).en_US
dc.identifier.citedreferenceD. Klotzkin and P. Bhattacharya, J. Lightwave Technol. 17, 1634 (1999).en_US
dc.identifier.citedreferenceD. Klotzkin, K. Kamath, and P. Bhattacharya, IEEE Photonics Technol. Lett. 9, 1301 (1997).en_US
dc.identifier.citedreferenceA. Majumdar, ASME Trans. J. Heat Transfer 114, 7 (1993).en_US
dc.identifier.citedreferenceS.-M. Lee and D. G. Cahilla, J. Appl. Phys. 81, 2590 (1997).en_US
dc.identifier.citedreferenceN. K. Dutta, D. C. Craft, and S. G. Napholtz, Appl. Phys. Lett. 46, 123 (1986).en_US
dc.identifier.citedreferenceA. S. Pabla, J. Woodhead, E. A. Khoo, R. Grey, J. P. R. David, and G. J. Rees, Appl. Phys. Lett. 68, 1595 (1996).en_US
dc.identifier.citedreferenceB. Zhao, T. R. Chen, S. Wu, Y. H. Zhuang, Y. Yamada, and A. Yariv, Appl. Phys. Lett. 62, 1591 (1993).en_US
dc.identifier.citedreferenceN. C. Gerhardt, M. R. Hofmann, J. Hader, J. V. Moloney, S. W. Koch, and H. Riechert, Appl. Phys. Lett. 84, 1 (2004).en_US
dc.identifier.citedreferenceW. Nakwaski, J. Appl. Phys. 64, 159 (1988).en_US
dc.identifier.citedreferenceW. S. Capinski and H. J. Maris, Physica B 219/220, 699 (1996).en_US
dc.identifier.citedreferenceH. Yang, H. Wang, K. Radhakrishnan, and C. L. Tan, IEEE Trans. Electron Devices 51, 1221 (2004).en_US
dc.identifier.citedreferenceT. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.-H. Lin, and S. S. Pei, Microscale Thermophys. Eng. 5, 225 (2001).en_US
dc.identifier.citedreferenceA. Khitun, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 84, 1762 (2004).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.