Show simple item record

Anomalous thermomechanical properties and laser-induced densification of vitreous silica

dc.contributor.authorHuang, Lipingen_US
dc.contributor.authorKieffer, Johnen_US
dc.date.accessioned2011-11-15T16:08:52Z
dc.date.available2011-11-15T16:08:52Z
dc.date.issued2006-10-02en_US
dc.identifier.citationHuang, Liping; Kieffer, John (2006). "Anomalous thermomechanical properties and laser-induced densification of vitreous silica." Applied Physics Letters 89(14): 141915-141915-3. <http://hdl.handle.net/2027.42/87797>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87797
dc.description.abstractThe authors studied the anomalous behaviors of vitreous silica under the combined influence of high temperature and pressure, by using molecular dynamics simulations based on a charge-transfer three-body potential. Accordingly, anomalous properties, such as the minimum in the bulk modulus at ∼ 2–3 GPa∼2–3GPa and the negative thermal expansion while under pressure, are inherently connected to the ability of the glass to undergo irreversible densification. Their simulations reveal the structural features responsible for this behavior, as well as the extent to which these properties can be tailored through specific processing routes and hence create glass that is less susceptible to radiation damage.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleAnomalous thermomechanical properties and laser-induced densification of vitreous silicaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87797/2/141915_1.pdf
dc.identifier.doi10.1063/1.2357016en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceT. P. Seward, C. Smith, N. F. Borrelli, and D. C. Allan, J. Non-Cryst. Solids 222, 407 (1997).en_US
dc.identifier.citedreferenceE. P. EerNisse, J. Appl. Phys. 45, 167 (1974).en_US
dc.identifier.citedreferenceC. B. Norris and E. P. EerNisse, J. Appl. Phys. 45, 3876 (1974).en_US
dc.identifier.citedreferenceT. A. Dellin, D. A. Tichenor, and E. H. Barsis, J. Appl. Phys. 48, 1131 (1977).en_US
dc.identifier.citedreferenceW. Primak, J. Appl. Phys. 49, 2572 (1977).en_US
dc.identifier.citedreferenceK. Awazu, J. Non-Cryst. Solids 337, 241 (2004).en_US
dc.identifier.citedreferenceD. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward, Opt. Lett. 21, 1960 (1996).en_US
dc.identifier.citedreferenceN. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward, J. Opt. Soc. Am. B 14, 1606 (1997).en_US
dc.identifier.citedreferenceC. Fiori and R. A. B. Devine, Appl. Phys. Lett. 47, 361 (1985).en_US
dc.identifier.citedreferenceM. Rothschild, D. J. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).en_US
dc.identifier.citedreferenceM. Grimsditch, Phys. Rev. Lett. 52, 2379 (1984).en_US
dc.identifier.citedreferenceR. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, Phys. Rev. Lett. 57, 747 (1986).en_US
dc.identifier.citedreferenceC. Meade, R. J. Hemley, and H. K. Mao, Phys. Rev. Lett. 69, 1387 (1992).en_US
dc.identifier.citedreferenceG. D. Mukherjee, S. N. Vaidya, and V. Sugandhi, Phys. Rev. Lett. 87, 195501 (2001).en_US
dc.identifier.citedreferenceL. P. Huang, L. Duffrene, and J. Kieffer, J. Non-Cryst. Solids 349, 1 (2004).en_US
dc.identifier.citedreferenceL. P. Huang and J. Kieffer, Phys. Rev. B 69, 224203 (2004).en_US
dc.identifier.citedreferenceL. P. Huang and J. Kieffer, Phys. Rev. B 69, 224204 (2004).en_US
dc.identifier.citedreferenceL. P. Huang and J. Kieffer, Glass Sci. Technol. (Offenbach, Ger.) 77, 124 (2004).en_US
dc.identifier.citedreferenceC. Meade and R. Jeanloz, Phys. Rev. B 35, 236 (1987).en_US
dc.identifier.citedreferenceJ. E. Shelby, Introduction to Glass Science and Technology, 2nd ed. (The Royal Society of Chemistry, Cambridge, 1997), p. 138.en_US
dc.identifier.citedreferenceR. Roy and H. M. Cohen, Nature (London) 190, 798 (1961).en_US
dc.identifier.citedreferenceW. Jin, R. K. Kalia, and P. Vashishta, Phys. Rev. B 50, 118 (1994).en_US
dc.identifier.citedreferenceJ. S. Tse, D. D. Klug, and Y. Le Page, Phys. Rev. B 46, 5933 (1992).en_US
dc.identifier.citedreferenceK. Trachenko and M. T. Dove, J. Phys.: Condens. Matter 14, 7449 (2002).en_US
dc.identifier.citedreferenceA. Kubota, M. J. Caturla, J. S. Stolken, and M. D. Feit, Opt. Express 8, 611 (2001).en_US
dc.identifier.citedreferenceA. Wootton, B. Thomas, and P. Harrowell, J. Chem. Phys. 115, 3336 (2001).en_US
dc.identifier.citedreferenceL. Q. Zheng, J. C. Lambropoulos, and A. W. Schmid, J. Non-Cryst. Solids 351, 3271 (2005).en_US
dc.identifier.citedreferenceL. P. Huang and J. Kieffer, J. Chem. Phys. 118, 1487 (2003).en_US
dc.identifier.citedreferenceK. Vollmayr, W. Kob, and K. Binder, Phys. Rev. B 54, 15808 (1996).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.