Show simple item record

Optical generation of high frequency ultrasound using two-dimensional gold nanostructure

dc.contributor.authorHou, Yangen_US
dc.contributor.authorKim, Jin-Sungen_US
dc.contributor.authorAshkenazi, Shaien_US
dc.contributor.authorO’Donnell, Matthewen_US
dc.contributor.authorGuo, L. Jayen_US
dc.date.accessioned2011-11-15T16:09:26Z
dc.date.available2011-11-15T16:09:26Z
dc.date.issued2006-08-28en_US
dc.identifier.citationHou, Yang; Kim, Jin-Sung; Ashkenazi, Shai; O’Donnell, Matthew; Guo, L. Jay (2006). "Optical generation of high frequency ultrasound using two-dimensional gold nanostructure." Applied Physics Letters 89(9): 093901-093901-3. <http://hdl.handle.net/2027.42/87823>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87823
dc.description.abstractA two-dimensional (2D) gold nanostructure is used to optically generate high frequency ultrasound. The structure consists of 2D arrangements of gold nanoparticles, sandwiched between a transparent substrate and a 4.5 μm4.5μm thick polydimethylsiloxane (PDMS) layer. The acoustic signal displays significant improvements compared to a bulk black PDMS films (the current state of the art) at frequencies from 50 to 100 MHz50to100MHz. The high optical extinction ratio of the gold nanostructure provides a convenient method to construct an integrated transmit/receive optoacoustic array. These results show that a 2D gold nanostructure can be used to produce high frequency arrays for ultrasound imaging.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleOptical generation of high frequency ultrasound using two-dimensional gold nanostructureen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87823/2/093901_1.pdf
dc.identifier.doi10.1063/1.2344929en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceR. A. Lemons and C. F. Quate, Appl. Phys. Lett. 24, 163 (1974).en_US
dc.identifier.citedreferenceA. Korpel, L. W. Kessler, and P. R. Palermo, Nature (London) 323, 110 (1971).en_US
dc.identifier.citedreferenceT. A. Ritter, T. R. Shrout, R. Tutwiler, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 217 (2002).en_US
dc.identifier.citedreferenceJ. O. Fiering, P. Hultman, W. Lee, E. D. Light, and S. W. Smith, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 764 (2000).en_US
dc.identifier.citedreferenceT. Buma, M. Spisar, and M. O’Donnell, Appl. Phys. Lett. 79, 548 (2001).en_US
dc.identifier.citedreferenceT. Buma, M. Spisar, and M. O’Donnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1065 (2003).en_US
dc.identifier.citedreferenceT. Buma, M. Spisar, and M. O’Donnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1161 (2003).en_US
dc.identifier.citedreferenceY. Hou, S. Ashkenazi, and M. O’Donnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted).en_US
dc.identifier.citedreferenceS. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, Appl. Phys. Lett. 86, 134102 (2005).en_US
dc.identifier.citedreferenceR. M. White, J. Appl. Phys. 34, 3559 (1963).en_US
dc.identifier.citedreferenceG. C. Wetsel, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 450 (1986).en_US
dc.identifier.citedreferenceJ. D. O’Keefe and C. H. Skeen, Appl. Phys. Lett. 21, 464 (1972).en_US
dc.identifier.citedreferenceS. Link and M. A. El-Sayed, Int. Rev. Phys. Chem. 19, 409 (2000).en_US
dc.identifier.citedreferenceW. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, Opt. Lett. 21, 1099 (1996).en_US
dc.identifier.citedreferenceJ. S. Kim, K. D. Lee, S. W. Ahn, S. H. Kim, J. D. Park, S. E. Lee, and S. S. Yoon, J. Korean Phys. Soc. 45, 890 (2004).en_US
dc.identifier.citedreferenceS. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, Microelectron. Eng. 78, 314 (2005).en_US
dc.identifier.citedreferenceS. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, S. H. Lee, J. D. Park, and P. W. Yoon, Nanotechnology 16, 1874 (2005).en_US
dc.identifier.citedreferenceJ. P. Monchalin, Appl. Phys. Lett. 45, 14 (1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.