Show simple item record

Capture and inception of bubbles near line vortices

dc.contributor.authorOweis, Ghanem F.en_US
dc.contributor.authorvan der Hout, I. E.en_US
dc.contributor.authorIyer, Claudia O.en_US
dc.contributor.authorTryggvason, G.en_US
dc.contributor.authorCeccio, Steven L.en_US
dc.date.accessioned2011-11-15T16:09:37Z
dc.date.available2011-11-15T16:09:37Z
dc.date.issued2005-02en_US
dc.identifier.citationOweis, G. F.; van der Hout, I. E.; Iyer, C.; Tryggvason, G.; Ceccio, S. L. (2005). "Capture and inception of bubbles near line vortices." Physics of Fluids 17(2): 022105-022105-14. <http://hdl.handle.net/2027.42/87832>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87832
dc.description.abstractMotivated by the need to predict vortex cavitation inception, a study has been conducted to investigate bubble capture by a concentrated line vortex of core size rcrc and circulation Γ0Γ0 under noncavitating and cavitating conditions. Direct numerical simulations that solve simultaneously for the two phase flow field, as well as a simpler one-way coupled point-particle-tracking model (PTM) were used to investigate the capture process. The capture times were compared to experimental observations. It was found that the point-particle-tracking model can successfully predict the capture of noncavitating small nuclei by a line vortex released far from the vortex axis. The nucleus grows very slowly during capture until the late stages of the process, where bubble/vortex interaction and bubble deformation become important. Consequently, PTM can be used to study the capture of cavitating nuclei by dividing the process into the noncavitating capture of the nucleus, and then the growth of the nucleus in the low-pressure core region. Bubble growth and deformation act to speed up the capture process.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCapture and inception of bubbles near line vorticesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48109-2121en_US
dc.contributor.affiliationumThe Ford Motor Company, Dearborn, Michigan 48126-2798en_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48109-2121en_US
dc.contributor.affiliationotherDelft University of Technology, The Netherlandsen_US
dc.contributor.affiliationotherWorcester Polytechnic Institute, Worcester, Massachusetts 01609-2280en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87832/2/022105_1.pdf
dc.identifier.doi10.1063/1.1834916en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceR. E. A. Arndt, “Cavitation in vortical flows,” Annu. Rev. Fluid Mech. 34, 143 (2002).en_US
dc.identifier.citedreferenceG. Sridhar and J. Katz, “Effect of entrained bubbles on the structure of vortex rings,” J. Fluid Mech. 397, 171 (1999).en_US
dc.identifier.citedreferenceC. T. Hsiao and L. L. Pauley, “Study of tip vortex cavitation inception using Navier-Stokes computation and bubble dynamics model,” J. Fluids Eng. 121, 198 (1999).en_US
dc.identifier.citedreferenceG.L. Chahine, “Non-spherical bubble dynamics in a line vortex,” Proceedings of the ASME FED Cavitation and Multiphase Flow Forum, Toronto, edited by O. Furuya (Kluwer Academic, Dordrecht, 1990), Vol. 98, p. 121.en_US
dc.identifier.citedreferenceG.L. Chahine, “Strong interactions bubble/bubble and bubble/flow,” Bubble Dynamics and Interface Phenomena, edited by J. R. Blake, J. M. Boulton-Stone, and N. H. Thomas (Kluwer Academic, Dordrecht, 1994), p. 195.en_US
dc.identifier.citedreferenceC.T. Hsiao and G.L. Chahine, “Numerical simulation of bubble dynamics in a vortex flow using Navier-Stokes computations and moving chimera grid scheme,” Proceedings of 4th International Symposium on Cavitation, California Institute of Technology, Pasadena, CA, June 20–23, 2001.en_US
dc.identifier.citedreferenceG.L. Chahine and C.-T. Hsiao, “Prediction of vortex cavitation inception using coupled spherical and non-spherical models,” Proceedings of 24th Symposium of Naval Hydrodynamics, Fukuoka, Japan, July 8–13, 2002.en_US
dc.identifier.citedreferenceM. R. Maxey and J. J. Riley, “Equation of motion for a small rigid sphere in a non-uniform flow,” Phys. Fluids 26, 883 (1983).en_US
dc.identifier.citedreferenceJ. Magnaudet and I. Eames, “The motion of high-Reynolds number bubbles in inhomogeneous flows,” Annu. Rev. Fluid Mech. 32, 659 (2000).en_US
dc.identifier.citedreferenceN. Raju and E. Meiburg, “Dynamics of spherical particles in vortical and stagnation point flow fields,” Phys. Fluids 9, 299 (1997).en_US
dc.identifier.citedreferenceW.L. Haberman and R.K. Morton, “An experimental investigation of the drag and shape of air bubbles rising in various liquids,” DTMB Report No. 802, 1953.en_US
dc.identifier.citedreferenceV.E. Johnson and T. Hsieh, “The influence of the trajectories of gas nuclei on cavitation inception,” Proceedings of the Sixth Symposium on Naval Hydrodynamics (Office of Naval Research, Washington, DC, 1966), p. 163.en_US
dc.identifier.citedreferenceT. R. Auton, “The lift on a spherical body in a rotational flow,” J. Fluid Mech. 183, 199 (1987).en_US
dc.identifier.citedreferenceT. R. Auton, J. C. R. Hunt, and M. Prud’homme, “The force exerted on a body moving in an inviscid unsteady non-uniform rotational flow,” J. Fluid Mech. 183, 241 (1988).en_US
dc.identifier.citedreferenceP. G. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid Mech. 22, 385 (1965).en_US
dc.identifier.citedreferenceD. S. Dandy and H. A. Dwyer, “A sphere in shear flow at finite Reynolds number: Effect of shear on particle lift, drag, and heat transfer,” J. Fluid Mech. 216, 381 (1990).en_US
dc.identifier.citedreferenceG. Sridhar and J. Katz, “Lift and drag forces on microscopic bubbles entrained by a vortex,” Phys. Fluids 7, 389 (1995).en_US
dc.identifier.citedreferenceG. F. Oweis, J. Choi, and S. L. Ceccio, “Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field,” J. Acoust. Soc. Am. 115, 1049 (2004).en_US
dc.identifier.citedreferenceA. Kubota, H. Kato, and H. Yamaguchi, “A new modeling of cavitating flows; a numerical study of unsteady cavitation on a hydrofoil section,” J. Fluid Mech. 240, 59 (1992).en_US
dc.identifier.citedreferenceM. Deshpande, J. Feng, and C. Merkle, “Numerical modeling of thermodynamic effects of cavitation,” ASME J. Fluids Eng. 119, 420 (1997).en_US
dc.identifier.citedreferenceS. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous, incompressible, multi-fluid flows,” J. Comput. Phys. 100, 23 (1992).en_US
dc.identifier.citedreferenceA. Esmaeeli and G. Tryggvason, “Direct numerical simulations of bubbly flows. Part 1. Low Reynolds number arrays,” J. Fluid Mech. 377, 313 (1998).en_US
dc.identifier.citedreferenceA. Esmaeeli and G. Tryggvason, “Direct numerical simulations of bubbly flows. Part 2. Moderate Reynolds number arrays,” J. Fluid Mech. 385, 325 (1999).en_US
dc.identifier.citedreferenceP. W. Yu, S. L. Ceccio, and G. Tryggvason, “The collapse of a cavitation bubble in shear flows—A numerical study,” Phys. Fluids 7, 2608 (1995).en_US
dc.identifier.citedreferenceG. Trggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan, “A front tracking method for the computations of multiphase flow,” J. Comput. Phys. 169, 708 (2001).en_US
dc.identifier.citedreferenceO. Boulon, M. Callenaere, J.-P. Franc, and J.-M. Michel, “An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil,” J. Fluid Mech. 390, 1 (1999).en_US
dc.identifier.citedreferenceG.F. Oweis and S.L. Ceccio, “Instantaneous and time averaged flow fields of multiple vortices in the tip region of a ducted propulsor,” Exp. Fluids (to be published).en_US
dc.identifier.citedreferenceC.E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, New York, 1995).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.