Show simple item record

NiGe on Ge(001) by reactive deposition epitaxy: An in situ ultrahigh-vacuum transmission-electron microscopy study

dc.contributor.authorNath, R.en_US
dc.contributor.authorSoo, C. W.en_US
dc.contributor.authorBoothroyd, C. B.en_US
dc.contributor.authorYeadon, M.en_US
dc.contributor.authorChi, D. Z.en_US
dc.contributor.authorSun, H. P.en_US
dc.contributor.authorChen, Y. B.en_US
dc.contributor.authorPan, Xiaoqingen_US
dc.contributor.authorFoo, Y. L.en_US
dc.date.accessioned2011-11-15T16:10:03Z
dc.date.available2011-11-15T16:10:03Z
dc.date.issued2005-05-16en_US
dc.identifier.citationNath, R.; Soo, C. W.; Boothroyd, C. B.; Yeadon, M.; Chi, D. Z.; Sun, H. P.; Chen, Y. B.; Pan, X. Q.; Foo, Y. L. (2005). "NiGe on Ge(001) by reactive deposition epitaxy: An in situ ultrahigh-vacuum transmission-electron microscopy study." Applied Physics Letters 86(20): 201908-201908-3. <http://hdl.handle.net/2027.42/87854>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87854
dc.description.abstractWe use an ultrahigh-vacuum transmission-electron microscopy, equipped with an electron-beam evaporator directed at a heating stage in the pole piece, to follow the reaction pathway of Ni on Ge(001) substrate at 300 °C. Using reactive deposition, we illustrate that epitaxial orthorhombic NiGe (a = 5.381 Åa=5.381Å, b = 3.428 Åb=3.428Å, and c = 5.811 Åc=5.811Å) phase can be grown directly without the initial formation of metal-rich Ni2GeNi2Ge phase. The epitaxial orientation of the NiGe islands and the underlying Ge(001) substrate were found to be NiGe(01)//Ge(001)NiGe(1¯01)∕∕Ge(001) and NiGe[010]//Ge[110]NiGe[010]∕∕Ge[110].en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNiGe on Ge(001) by reactive deposition epitaxy: An in situ ultrahigh-vacuum transmission-electron microscopy studyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherInstitute of Materials Research and Engineering, 3 Research Link, Singapore S117602, Singaporeen_US
dc.contributor.affiliationotherInstitute of Materials Research and Engineering, 3 Research Link, Singapore S117602, Singaporeen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87854/2/201908_1.pdf
dc.identifier.doi10.1063/1.1929100en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceM.L. Lee and E.A. Fitzgerald, IEEE International Electron Devices Meeting, 18.1.1 (2003).en_US
dc.identifier.citedreferenceC. W. Leitz, M. T. Currie, M. L. Lee, Z. Y. Cheng, D. A. Antoniadis, and E. A. Fitzgerald, J. Appl. Phys. 92, 3745 (2002).en_US
dc.identifier.citedreferenceM. L. Lee, C. W. Leitz, Z. Y. Cheng, A. J. Pitera, T. A. Langdo, M. T. Currie, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis, Appl. Phys. Lett. 79, 3344 (2001).en_US
dc.identifier.citedreferenceProperties of Silicon Germanium and SiGe:Carbon, edited by E. Kasper, and K. Lyutovich (The Institution of Electrical Engineers, London, 2000).en_US
dc.identifier.citedreferenceO. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, Thin Solid Films 402, 248 (2002).en_US
dc.identifier.citedreferenceS. L. Zhang, C. Lavoie, C. Cabral, J. M. E. Harper, F. M. d’Heurle, and J. Jordan-Sweet, J. Appl. Phys. 85, 2617 (1999).en_US
dc.identifier.citedreferenceM. L. A. Dass, D. B. Fraser, and C. S. Wei, Appl. Phys. Lett. 58, 1308 (1991).en_US
dc.identifier.citedreferenceD. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, Appl. Phys. Lett. 75, 1736 (1999).en_US
dc.identifier.citedreferenceN. Franco, J. E. Klepeis, C. Bostedt, T. Van Buuren, C. Heske, O. Pankratov, T. A. Callcott, D. L. Ederer, and L. J. Terminello, Phys. Rev. B 68, 045116 (2003).en_US
dc.identifier.citedreferenceG. Chen, J. Wan, J. S. Yang, X. M. Ding, L. Ye, and X. Wang, Surf. Sci. 513, 203 (2002).en_US
dc.identifier.citedreferenceP. Gergaud, M. Megdiche, O. Thomas, and B. Chenevier, Appl. Phys. Lett. 83, 1334 (2003).en_US
dc.identifier.citedreferenceH. P. Sun, Y. B. Chen, X. Q. Pan, D. Z. Chi, R. Nath, and Y. L. Foo, Appl. Phys. Lett. 86, 071904 (2005).en_US
dc.identifier.citedreferenceM. Ellner, T. Goedecke, and K. Schubert, J. Less-Common Met. 24, 23 (1971).en_US
dc.identifier.citedreferenceM. Wittmer, M.-A. Nicolet, and J. W. Mayer, Thin Solid Films 42, 51 (1976).en_US
dc.identifier.citedreferenceR. M. Walser and R. W. Bené, Appl. Phys. Lett. 28, 624 (1976).en_US
dc.identifier.citedreferenceY. F. Hsieh, L. J. Chen, E. D. Marshall, and S. S. Lau, Thin Solid Films 162, 287 (1988).en_US
dc.identifier.citedreferenceR. K. K. Chong, M. Yeadon, W. K. Choi, E. A. Stach, and C. B. Boothroyd, Appl. Phys. Lett. 82, 1833 (2003).en_US
dc.identifier.citedreferenceW.B. Pearson, Pearson’s Handbook of Crystallographic Data for Intermetallic Phase (ASM, Metals Park, OH, 1997).en_US
dc.identifier.citedreferenceR. T. Tung, Mater. Chem. Phys. 32, 107 (1992).en_US
dc.identifier.citedreferencePhase Diagrams of Binary Nickel Alloys, edited by P. Nash (ASM, Metals Park, OH, 1991).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.