Show simple item record

Self-assembled morphologies of monotethered polyhedral oligomeric silsesquioxane nanocubes from computer simulation

dc.contributor.authorZhang, Xien_US
dc.contributor.authorChan, Elaine R.en_US
dc.contributor.authorGlotzer, Sharon C.en_US
dc.date.accessioned2011-11-15T16:10:09Z
dc.date.available2011-11-15T16:10:09Z
dc.date.issued2005-11-08en_US
dc.identifier.citationZhang, Xi; Chan, Elaine R.; Glotzer, Sharon C. (2005). "Self-assembled morphologies of monotethered polyhedral oligomeric silsesquioxane nanocubes from computer simulation." The Journal of Chemical Physics 123(18): 184718-184718-6. <http://hdl.handle.net/2027.42/87859>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87859
dc.description.abstractSelf-assembly of functionalized nanoscale building blocks is a promising strategy for “bottom-up” materials design. Recent experiments have demonstrated that the self-assembly of polyhedral oligomeric silsesquioxane (POSS) “nanocubes” functionalized with organic tethers can be utilized to synthesize novel materials with highly ordered, complex nanostructures. We have performed molecular simulations for a simplified model of monotethered POSS nanocubes to investigate systematically how the parameters that control the assembly process and the resulting equilibrium structures, including concentration, temperature, tether lengths, and solvent conditions, can be manipulated to achieve useful structures via self-assembly. We report conventional lamellar and cylindrical structures that are typically found in block copolymer and surfactant systems, including a thermotropic order-order transition, but with interesting stabilization of the lamellar phase caused by the bulkiness and cubic geometry of the POSS nanocubes.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSelf-assembled morphologies of monotethered polyhedral oligomeric silsesquioxane nanocubes from computer simulationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.identifier.pmid16292932en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87859/2/184718_1.pdf
dc.identifier.doi10.1063/1.2060664en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceG. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. U.S.A. 99, 4769 (2002).en_US
dc.identifier.citedreferenceI. W. Hamley, Angew. Chem., Int. Ed. 42, 1692 (2003).en_US
dc.identifier.citedreferenceN. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, J. Mater. Chem. 12, 2909 (2002).en_US
dc.identifier.citedreferenceY. Sun and Y. Xia, Science 298, 2176 (2002).en_US
dc.identifier.citedreferenceD. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. P. Alivisatos, Nature (London) 430, 190 (2004).en_US
dc.identifier.citedreferenceY. Wang, Z. Tang, X. Liang, L. M. Liz-Marzán, and N. A. Kotov, Nano Lett. 4, 225 (2004).en_US
dc.identifier.citedreferenceG. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, Nano Lett. 3, 519 (2003).en_US
dc.identifier.citedreferenceT. D. Clark, R. Ferrigno, J. Tien, K. E. Paul, and G. M. Whitesides, J. Am. Chem. Soc. 124, 5419 (2002).en_US
dc.identifier.citedreferenceJ. D. Lichtenhan, Comments Inorg. Chem. 17, 115 (1995);J. J. Schwab and J. D. Lichtenhan, Appl. Organomet. Chem. 12, 707 (1998);R. M. Laine, C. Zhang, A. Sellinger, and L. Viculis, Appl. Organomet. Chem. 12, 715 (1998).en_US
dc.identifier.citedreferenceF. J. Feher and T. A. Budzichowski, Polyhedron 14, 3239 (1995);C. Marcolli and G. Calzaferri, Appl. Organomet. Chem. 13, 213 (1999);G. Li, L. Wang, H. Ni, and C. U. Pittman, J. Inorg. Organomet. Polym. 11, 123 (2001).en_US
dc.identifier.citedreferenceR. Knischka, F. Dietsche, R. Hanselmann, H. Frey, R. Mülhaupt, and P. J. Lutz, Langmuir 15, 4752 (1999).en_US
dc.identifier.citedreferenceK.-M. Kim, D.-K. Keum, and Y. Chujo, Macromolecules 36, 867 (2003).en_US
dc.identifier.citedreferenceG. Cardoen and E. B. Coughlin, Macromolecules 37, 5123 (2004).en_US
dc.identifier.citedreferenceC.-M. Leu, G. M. Reddy, K.-H. Wei, and C.-F. Shu, Chem. Mater. 15, 2261 (2003).en_US
dc.identifier.citedreferenceZ. L. Zhang, M. A. Horsch, M. H. Lamm, and S. C. Glotzer, Nano Lett. 3, 1341 (2003).en_US
dc.identifier.citedreferenceM. W. Matsen and F. S. Bates, Macromolecules 29, 1091 (1996).en_US
dc.identifier.citedreferenceJ.N. Israelachvili, Intermolecular and Surface Forces. (Academic, London, 1992).en_US
dc.identifier.citedreferenceA. J. Schultz, C. K. Hall, and J. Genzer, J. Chem. Phys. 117, 10329 (2002).en_US
dc.identifier.citedreferenceR. G. Larson, J. Phys. II 6, 1441 (1996).en_US
dc.identifier.citedreferenceE. R. Chan, X. Zhang, C.-Y. Lee, M. Neurock, and S. C. Glotzer, Macromolecules 38, 6168 (2005).en_US
dc.identifier.citedreferenceA. M. Bieniok and H. B. Bürgi, J. Phys. Chem. 98, 10735 (1994).en_US
dc.identifier.citedreferenceM. H. Lamm, T. Chen, and S. C. Glotzer, Nano Lett. 3, 989 (2003).en_US
dc.identifier.citedreferenceG. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).en_US
dc.identifier.citedreferenceM.P. Allen and D.J. Tildesley, Computer Simulation of Liquids. (Clarendon, Oxford, 1987).en_US
dc.identifier.citedreferenceJ. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).en_US
dc.identifier.citedreferenceW. F. van Gunsteren, H. J. C. Berendsen, and J. A. C. Rullmann, Mol. Phys. 44, 69 (1981);G. S. Grest, M. D. Lacasse, K. Kremer, and A. M. Gupta, J. Chem. Phys. 105, 10583 (1996).en_US
dc.identifier.citedreferenceR. Kubo, Rep. Prog. Phys. 29, 255 (1966).en_US
dc.identifier.citedreferenceR. G. Larson, J. Chem. Phys. 96, 7904 (1992);H. Guo and K. Kremer, J. Chem. Phys. 119, 9308 (2003).en_US
dc.identifier.citedreferenceM. A. Horsch, Z. L. Zhang, C. R. Iacovella, and S. C. Glotzer, J. Chem. Phys. 121, 11455 (2004).en_US
dc.identifier.citedreferenceR. G. Larson, Chem. Eng. Sci. 49, 2833 (1994).en_US
dc.identifier.citedreferenceT. P. E. Auf der Heyde, H.-B. Bürgi, H. Bürgy, and K. W. Törnroos, Chimia 45, 38 (1991);K. Larsson, Ark. Kemi 16, 203 (1960);G. Calzaferri, R. Imhof, and K. W. Törnroos, J. Chem. Soc. Dalton Trans. 1994, 3123.en_US
dc.identifier.citedreferenceT.C. Ionescu, F. Qi, C. McCabe, A. Striolo, J. Kieffer, and P.T. Cummings, J. Phys. Chem. B (to be published).en_US
dc.identifier.citedreferenceC. I. Huang and T. P. Lodge, Macromolecules 31, 3556 (1998).en_US
dc.identifier.citedreferenceC. McCabe, S. C. Glotzer, J. Kieffer, M. Neurock, and P. T. Cummings, J. Comput. Theor. Nanosci. 1, 265 (2004).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.