Show simple item record

Fractal dimensions of silica gels generated using reactive molecular dynamics simulations

dc.contributor.authorBhattacharya, Sudinen_US
dc.contributor.authorKieffer, Johnen_US
dc.date.accessioned2011-11-15T16:10:16Z
dc.date.available2011-11-15T16:10:16Z
dc.date.issued2005-03-01en_US
dc.identifier.citationBhattacharya, Sudin; Kieffer, John (2005). "Fractal dimensions of silica gels generated using reactive molecular dynamics simulations." The Journal of Chemical Physics 122(9): 094715-094715-8. <http://hdl.handle.net/2027.42/87864>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87864
dc.description.abstractWe have used molecular dynamics simulations based on a three-body potential with charge transfer to generate nanoporous silica aerogels. Care was taken to reproduce the sol-gel condensation reaction that forms the gel backbone as realistically as possible and to thereby produce credible gel structures. The self-similarity of aerogel structures was investigated by evaluating their fractal dimension from geometric correlations. For comparison, we have also generated porous silica glasses by rupturing dense silica and computed their fractal dimension. The fractal dimension of the porous silica structures was found to be process dependent. Finally, we have determined that the effect of supercritical drying on the fractal nature of condensed silica gels is not appreciable.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleFractal dimensions of silica gels generated using reactive molecular dynamics simulationsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2158en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.identifier.pmid15836170en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87864/2/094715_1.pdf
dc.identifier.doi10.1063/1.1857522en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceJ. Zarzycki, J. Sol-Gel Sci. Technol. 8, 17 (1997).en_US
dc.identifier.citedreferenceC.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, New York, 1990).en_US
dc.identifier.citedreferenceS. H. Garofalini and G. Martin, J. Phys. Chem. 98, 1311 (1994).en_US
dc.identifier.citedreferenceB. P. Feuston and S. H. Garofalini, J. Phys. Chem. 94, 5351 (1990).en_US
dc.identifier.citedreferenceB. P. Feuston and S. H. Garofalini, Chem. Phys. Lett. 170, 264 (1990).en_US
dc.identifier.citedreferenceG. E. Martin and S. H. Garofalini, J. Non-Cryst. Solids 171, 68 (1994).en_US
dc.identifier.citedreferenceJ. C. G. Pereira, C. R. A. Catlow, and G. D. Price, J. Phys. Chem. A 106, 130 (2002).en_US
dc.identifier.citedreferenceN.A. Peppas, A.B. Scranton, A.H. Tsou, and D.E. Edwards, in Better Ceramics Through Chemistry III, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Material Research Society, Pittsburgh, PA, 1988), Vol. 121, p. 43.en_US
dc.identifier.citedreferenceR. A. Assink and B. D. Kay, J. Non-Cryst. Solids 99, 359 (1988).en_US
dc.identifier.citedreferenceN. Re, J. Non-Cryst. Solids 142, 1 (1992).en_US
dc.identifier.citedreferenceB. D. Kay and R. A. Assink, J. Non-Cryst. Solids 104, 112 (1988).en_US
dc.identifier.citedreferenceA. Hasmy and R. Jullien, J. Non-Cryst. Solids 186, 342 (1995).en_US
dc.identifier.citedreferenceP. I. Pohl, J. L. Faulon, and D. M. Smith, J. Non-Cryst. Solids 186, 349 (1995).en_US
dc.identifier.citedreferenceE. A. Chandler and D. F. Calef, J. Non-Cryst. Solids 186, 356 (1995).en_US
dc.identifier.citedreferenceL. Duffrene and J. Kieffer, J. Phys. Chem. Solids 59, 1025 (1998).en_US
dc.identifier.citedreferenceL. P. Huang and J. Kieffer, J. Chem. Phys. 118, 1487 (2003).en_US
dc.identifier.citedreferenceL. P. Huang and J. Kieffer, Phys. Rev. B 69, 224203 (2004).en_US
dc.identifier.citedreferenceL. P. Huang and J. Kieffer, Phys. Rev. B 69, 224204 (2004).en_US
dc.identifier.citedreferenceD. W. Schaefer and K. D. Keefer, Phys. Rev. Lett. 56, 2199 (1986).en_US
dc.identifier.citedreferenceR. Vacher, T. Woignier, J. Pelous, and E. Courtens, Phys. Rev. B 37, 6500 (1988).en_US
dc.identifier.citedreferenceF. Devreux, J. P. Boilot, F. Chaput, and B. Sapoval, Phys. Rev. Lett. 65, 614 (1990).en_US
dc.identifier.citedreferenceE. Courtens and R. Vacher, in Fractals in the Natural Sciences, edited by M. Fleischmann, D. J. Tildesley, and R. C. Ball (Princeton University Press, Princeton, NJ, 1989), p. 55.en_US
dc.identifier.citedreferenceA. Hasmy, M. Foret, J. Pelous, and R. Jullien, Phys. Rev. B 48, 9345 (1993).en_US
dc.identifier.citedreferenceA. Hasmy, E. Anglaret, M. Foret, J. Pelous, and R. Jullien, Phys. Rev. B 50, 6006 (1994).en_US
dc.identifier.citedreferenceM. Grzegorczyk, M. Rybaczuk, and K. Maruszewski, Chaos, Solitons Fractals 19, 1003 (2004).en_US
dc.identifier.citedreferenceA. C. Lasaga and G. V. Gibbs, Phys. Chem. Miner. 14, 107 (1987).en_US
dc.identifier.citedreferenceM. J. Sander, M. Leslie, and C. R. A. Catlow, J. Chem. Soc., Chem. Commun. 19, 1271 (1984).en_US
dc.identifier.citedreferenceC. R. A. Catlow and A. N. Cormack, Int. Rev. Phys. Chem. 6, 227 (1987).en_US
dc.identifier.citedreferenceM. L. Huggins and J. E. Mayer, J. Chem. Phys. 1, 643 (1933).en_US
dc.identifier.citedreferenceP. P. Ewald, Ann. Phys. (Leipzig) 64, 253 (1921).en_US
dc.identifier.citedreferenceC. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).en_US
dc.identifier.citedreferenceR.K. Iler, The Chemistry of Silica (Wiley, New York, 1979).en_US
dc.identifier.citedreferenceL. L. Hench and J. K. West, Chem. Rev. (Washington, D.C.) 90, 33 (1990).en_US
dc.identifier.citedreferenceG. Beaucage, Phys. Rev. E 70, 031401 (2004).en_US
dc.identifier.citedreferenceF. Devreux, J. P. Boilot, F. Chaput, and A. Lecomte, Phys. Rev. A 41, 6901 (1990).en_US
dc.identifier.citedreferenceL. Malier, J. P. Boilot, F. Chaput, and F. Devreux, Phys. Rev. A 46, 959 (1992).en_US
dc.identifier.citedreferenceK. Kamiya, T. Dohkai, M. Wada, T. Hashimoto, J. Matsuoka, and H. Nasu, J. Non-Cryst. Solids 240, 202 (1998).en_US
dc.identifier.citedreferenceI. Beurroies, L. Duffours, P. Delord, T. Woignier, and J. Phalippou, J. Non-Cryst. Solids 241, 38 (1998).en_US
dc.identifier.citedreferenceJ. Kieffer and C. A. Angell, J. Non-Cryst. Solids 106, 336 (1988).en_US
dc.identifier.citedreferenceT. Woignier, J. Phalippou, and R. Vacher, in Better Ceramics Through Chemistry III, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Material Research Society, Pittsburgh, PA, 1988), Vol. 121, p. 697.en_US
dc.identifier.citedreferenceT. Woignier, J. Reynes, A. H. Alaoui, I. Beurroies, and J. Phalippou, J. Non-Cryst. Solids 241, 45 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.