Show simple item record

Homogeneity and Markovity of electronic dephasing in liquid solutions

dc.contributor.authorKa, Being J.en_US
dc.contributor.authorZhang, Ming-Liangen_US
dc.contributor.authorGeva, Eitanen_US
dc.date.accessioned2011-11-15T16:10:21Z
dc.date.available2011-11-15T16:10:21Z
dc.date.issued2006-09-28en_US
dc.identifier.citationKa, Being J.; Zhang, Ming-Liang; Geva, Eitan (2006). "Homogeneity and Markovity of electronic dephasing in liquid solutions." The Journal of Chemical Physics 125(12): 124509-124509-8. <http://hdl.handle.net/2027.42/87868>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87868
dc.description.abstractThe electronic dephasing dynamics of a solvated chromophore is formulated in terms of a non-Markovian master equation. Within this formulation, one describes the effect of the nuclear degrees of freedom on the electronic degrees of freedom in terms of a memory kernel function, which is explicitly dependent on the initial solvent configuration. In the case of homogeneous dynamics, this memory kernel becomes independent of the initial configuration. The Markovity of the dephasing process is also the most conveniently explored by comparing the results obtained via the non-Markovian master equation to these obtained via its Markovian counterpart. The homogeneous memory kernel is calculated for a two-state chromophore in liquid solution, and used to explore the sensitivity of photon echo signals to the heterogeneity and non-Markovity of the underlying solvation dynamics.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHomogeneity and Markovity of electronic dephasing in liquid solutionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109-1055en_US
dc.identifier.pmid17014193en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87868/2/124509_1.pdf
dc.identifier.doi10.1063/1.2354155en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceS. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).en_US
dc.identifier.citedreferenceG. R. Fleming and M. Cho, Annu. Rev. Phys. Chem. 47, 109 (1996).en_US
dc.identifier.citedreferenceW. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Annu. Rev. Phys. Chem. 49, 99 (1998).en_US
dc.identifier.citedreferenceA. B. Myers, Annu. Rev. Phys. Chem. 49, 267 (1998).en_US
dc.identifier.citedreferenceR. M. Stratt and M. Maroncelli, J. Phys. Chem. 100, 12981 (1996).en_US
dc.identifier.citedreferenceP. Vöhringer, D. C. Arnett, T.-S. Yang, and N. F. Scherer, Chem. Phys. Lett. 237, 387 (1995).en_US
dc.identifier.citedreferenceD. Hsu and J. L. Skinner, J. Chem. Phys. 81, 5471 (1984).en_US
dc.identifier.citedreferenceP. D. Reilly and J. L. Skinner, Phys. Rev. Lett. 71, 4257 (1993).en_US
dc.identifier.citedreferenceP. D. Reilly and J. L. Skinner, J. Chem. Phys. 102, 1540 (1995).en_US
dc.identifier.citedreferenceE. Geva, P. D. Reilly, and J. L. Skinner, Acc. Chem. Res. 29, 579 (1996).en_US
dc.identifier.citedreferenceE. Geva and J. L. Skinner, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 291, 73 (1996).en_US
dc.identifier.citedreferenceE. Geva and J. L. Skinner, Chem. Phys. Lett. 287, 125 (1998).en_US
dc.identifier.citedreferenceM. Orrit, J. Bernard, and R. I. Personov, J. Phys. Chem. 97, 10256 (1993).en_US
dc.identifier.citedreferenceW. E. Moerner, Acc. Chem. Res. 29, 563 (1996).en_US
dc.identifier.citedreferenceT. M. Chang and J. L. Skinner, Physica A 193, 483 (1993).en_US
dc.identifier.citedreferenceE. T. J. Nibbering, D. A. Wiersma, and K. Duppen, Phys. Rev. Lett. 66, 2464 (1991).en_US
dc.identifier.citedreferenceW. P. de Boeij, M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, Chem. Phys. Lett. 224, 243 (1994).en_US
dc.identifier.citedreferenceW. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, J. Chem. Phys. 105, 2953 (1996).en_US
dc.identifier.citedreferenceP. Cong, Y. J. Yan, H. P. Deuel, and J. D. Simon, J. Chem. Phys. 100, 7855 (1994).en_US
dc.identifier.citedreferenceJ. G. Saven and J. L. Skinner, J. Chem. Phys. 99, 4391 (1993).en_US
dc.identifier.citedreferenceM. D. Stephens, J. G. Saven, and J. L. Skinner, J. Chem. Phys. 106, 2129 (1997).en_US
dc.identifier.citedreferenceS. A. Egorov, E. Rabani, and B. J. Berne, J. Chem. Phys. 108, 1407 (1998).en_US
dc.identifier.citedreferenceS. A. Egorov, E. Rabani, and B. J. Berne, J. Chem. Phys. 110, 5238 (1999).en_US
dc.identifier.citedreferenceP. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Pt. 1.en_US
dc.identifier.citedreferenceW. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986).en_US
dc.identifier.citedreferenceM.-L. Zhang, B. J. Ka, and E. Geva, J. Chem. Phys. 125, 044106 (2006).en_US
dc.identifier.citedreferenceS. Nakajima, Prog. Theor. Phys. 20, 948 (1958).en_US
dc.identifier.citedreferenceR. Zwanzig, Lect. Theor. Phys. 3, 106 (1960).en_US
dc.identifier.citedreferenceR. Zwanzig, J. Chem. Phys. 33, 1338 (1960).en_US
dc.identifier.citedreferenceR. Zwanzig, Physica (Amsterdam) 30, 1109 (1964).en_US
dc.identifier.citedreferenceK. F. Everitt, E. Geva, and J. L. Skinner, J. Chem. Phys. 114, 1326 (2001).en_US
dc.identifier.citedreferenceK. F. Everitt and J. L. Skinner, Chem. Phys. 266, 197 (2001).en_US
dc.identifier.citedreferenceM. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).en_US
dc.identifier.citedreferenceN. Makri, Annu. Rev. Phys. Chem. 50, 167 (1999).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. 120, 10647 (2004).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Phys. Chem. A 108, 6109 (2004).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. 121, 3393 (2004).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. 122, 064506 (2005).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.