Show simple item record

Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation

dc.contributor.authorZhang, Ming-Liangen_US
dc.contributor.authorKa, Being J.en_US
dc.contributor.authorGeva, Eitanen_US
dc.date.accessioned2011-11-15T16:10:23Z
dc.date.available2011-11-15T16:10:23Z
dc.date.issued2006-07-28en_US
dc.identifier.citationZhang, Ming-Liang; Ka, Being J.; Geva, Eitan (2006). "Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation." The Journal of Chemical Physics 125(4): 044106-044106-12. <http://hdl.handle.net/2027.42/87869>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87869
dc.description.abstractThe Nakajima-Zwanzig generalized quantum master equation provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum bath. In this equation, the memory kernel accounts for the influence of the bath on the system’s dynamics, and the inhomogeneous term accounts for initial system-bath correlations. In this paper, we propose a new approach for calculating the memory kernel and inhomogeneous term for arbitrary initial state and system-bath coupling. The memory kernel and inhomogeneous term are obtained by numerically solving a single inhomogeneous Volterra equation of the second kind for each. The new approach can accommodate a very wide range of projection operators, and requires projection-free two-time correlation functions as input. An application to the case of a two-state system with diagonal coupling to an arbitrary bath is described in detail. Finally, the utility and self-consistency of the formalism are demonstrated by an explicit calculation on a spin-boson model.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry and FOCUS Center, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87869/2/044106_1.pdf
dc.identifier.doi10.1063/1.2218342en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceS. Nakajima, Prog. Theor. Phys. 20, 948 (1958).en_US
dc.identifier.citedreferenceR. Zwanzig, Lect. Theor. Phys. 3, 106 (1960).en_US
dc.identifier.citedreferenceR. Zwanzig, J. Chem. Phys. 33, 1338 (1960).en_US
dc.identifier.citedreferenceR. Zwanzig, Physica (Utrecht) 30, 1109 (1964).en_US
dc.identifier.citedreferenceI. Prigogine and P. Resibois, Physica (Amsterdam) 27, 629 (1961).en_US
dc.identifier.citedreferenceF. Haake, Springer Tracts Mod. Phys. 66, 98 (1973).en_US
dc.identifier.citedreferenceH. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1982).en_US
dc.identifier.citedreferenceR. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer-Verlag, Berlin, 1987).en_US
dc.identifier.citedreferenceV. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, Berlin, 2000).en_US
dc.identifier.citedreferenceB. Yoon, J. M. Deutch, and J. H. Freed, J. Chem. Phys. 62, 4687 (1975).en_US
dc.identifier.citedreferenceI. Oppenheim, K. E. Shuler, and G. H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation (MIT, Cambridge, MA, 1977).en_US
dc.identifier.citedreferenceS. Mukamel, I. Oppenheim, and J. Ross, Phys. Rev. A 17, 1988 (1978).en_US
dc.identifier.citedreferenceV. Romero-Rochin and I. Oppenheim, J. Stat. Phys. 53, 307 (1988).en_US
dc.identifier.citedreferenceV. Romero-Rochin and I. Oppenheim, Physica A 155, 52 (1989).en_US
dc.identifier.citedreferenceV. Romero-Rochin, A. Orsky, and I. Oppenheim, Physica A 156, 244 (1989).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. 119, 12063 (2003).en_US
dc.identifier.citedreferenceK. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996).en_US
dc.identifier.citedreferenceR. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953).en_US
dc.identifier.citedreferenceA. G. Redfield, IBM J. Res. Dev. 1, 19 (1957).en_US
dc.identifier.citedreferenceN. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).en_US
dc.identifier.citedreferenceR. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer-Verlag, New York, 1985).en_US
dc.identifier.citedreferenceB. B. Laird, J. Budimir, and J. L. Skinner, J. Chem. Phys. 94, 4391 (1991).en_US
dc.identifier.citedreferenceW. T. Pollard and R. A. Friesner, J. Chem. Phys. 100, 5054 (1994).en_US
dc.identifier.citedreferenceW. T. Pollard, A. K. Felts, and R. A. Friesner, Adv. Chem. Phys. 93, 77 (1996).en_US
dc.identifier.citedreferenceE. Geva, R. Kosloff, and J. L. Skinner, J. Chem. Phys. 102, 8541 (1995).en_US
dc.identifier.citedreferenceE. Geva and R. Kosloff, J. Chem. Phys. 104, 7681 (1996).en_US
dc.identifier.citedreferenceD. Kohen, C. C. Marston, and D. J. Tannor, J. Chem. Phys. 107, 5236 (1997).en_US
dc.identifier.citedreferenceJ. Cao, J. Chem. Phys. 107, 3204 (1997).en_US
dc.identifier.citedreferenceY. J. Yan, Phys. Rev. A 58, 2721 (1998).en_US
dc.identifier.citedreferenceM. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A 25, 1283 (1992).en_US
dc.identifier.citedreferenceG. Ashkenazi, G. Ashkenazi, U. Banin, A. Bartana, R. Kosloff, and S. Ruhman, Adv. Chem. Phys. 100, 229 (1997).en_US
dc.identifier.citedreferenceG. Ashkenazi, R. Kosloff, and M. A. Ratner, J. Am. Chem. Soc. 121, 3386 (1999).en_US
dc.identifier.citedreferenceR. Kosloff, M. A. Ratner, and W. B. Davis, J. Chem. Phys. 106, 7036 (1997).en_US
dc.identifier.citedreferenceA. Suárez and R. Silbey, J. Chem. Phys. 94, 4809 (1991).en_US
dc.identifier.citedreferenceD. Li and G. A. Voth, J. Phys. Chem. 95, 10425 (1991).en_US
dc.identifier.citedreferenceN. Makri, J. Math. Phys. 36, 2430 (1995).en_US
dc.identifier.citedreferenceN. Makri, J. Phys. Chem. A 102, 4414 (1998).en_US
dc.identifier.citedreferenceN. Makri, Annu. Rev. Phys. Chem. 50, 167 (1999).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. 120, 10647 (2004).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. 121, 3393 (2004).en_US
dc.identifier.citedreferenceR. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1983).en_US
dc.identifier.citedreferenceJ. T. Hynes and J. M. Deutch, in Physical Chemistry, edited by D. Henderson (Academic, New York, 1975), Vol. XIB.en_US
dc.identifier.citedreferenceR. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, New York, 2001).en_US
dc.identifier.citedreferenceW. Heitler, Quantum Theory of Radiation (Oxford, London, 1954).en_US
dc.identifier.citedreferenceU. Fano, Phys. Rev. 131, 259 (1963).en_US
dc.identifier.citedreferenceA. Ben-Reuven, Phys. Rev. 141, 34 (1966).en_US
dc.identifier.citedreferenceH. Mori, Prog. Theor. Phys. 33, 423 (1965).en_US
dc.identifier.citedreferenceH. Grabert, Z. Phys. B 26, 79 (1977).en_US
dc.identifier.citedreferenceP. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).en_US
dc.identifier.citedreferenceS. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).en_US
dc.identifier.citedreferenceM. D. Stephens, J. G. Saven, and J. L. Skinner, J. Chem. Phys. 106, 2129 (1997).en_US
dc.identifier.citedreferenceJ. L. Skinner and W. E. Moerner, J. Phys. Chem. 100, 13251 (1996).en_US
dc.identifier.citedreferenceA. J. Leggett, A. J. Leggett, S. Chakravarty, A. T. Dorsesy, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).en_US
dc.identifier.citedreferenceJ. L. Skinner and D. Hsu, Adv. Chem. Phys. 65, 1 (1986).en_US
dc.identifier.citedreferenceS. A. Egorov, E. Rabani, and B. J. Berne, J. Chem. Phys. 108, 1407 (1998).en_US
dc.identifier.citedreferenceW. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.