Show simple item record

Combustion-generated nanoparticles produced in a benzene flame: A multiscale approach

dc.contributor.authorVioli, Angelaen_US
dc.contributor.authorVenkatnathan, Arunen_US
dc.date.accessioned2011-11-15T16:10:24Z
dc.date.available2011-11-15T16:10:24Z
dc.date.issued2006-08-07en_US
dc.identifier.citationVioli, Angela; Venkatnathan, Arun (2006). "Combustion-generated nanoparticles produced in a benzene flame: A multiscale approach." The Journal of Chemical Physics 125(5): 054302-054302-8. <http://hdl.handle.net/2027.42/87870>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87870
dc.description.abstractThis paper details the multiscale methodology developed to analyze the formation of nanoparticles in a manner that makes it possible to follow the evolution of the structures in a chemically specific way. The atomistic model for particle inception code that combines the strengths of kinetic Monte Carlo and molecular dynamics is used to study the chemical and physical properties of nanoparticles generated in a premixed fuel-rich benzene flame, providing atomistic scale structures (bonds, bond angles, dihedral angles) as soot precursors evolve into a three-dimensional structure. Morphology, density, porosity, and other physical properties are computed. Two heights corresponding to two different times in the benzene flame, experimentally studied by Bittner and Howard [Proc. Combust. Inst. 18, 1105 (1981)], were chosen to examine the influence of different environments on structural properties of the particles formed.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCombustion-generated nanoparticles produced in a benzene flame: A multiscale approachen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.identifier.pmid16942208en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87870/2/054302_1.pdf
dc.identifier.doi10.1063/1.2234481en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceG. Marland, T. A. Boden, and R. J. Andres, Global, Regional, and National Fossil Fuel CO2 Emissions. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Center, Oak Ridge National Laboratory Report, U.S. Department of Energy, Oak Ridge, TN (2006).en_US
dc.identifier.citedreferenceA. S. Manne, Stephan G. Energy Policy 27(6), 309–316 (1999).en_US
dc.identifier.citedreferenceS. Izvekov and A. Violi, J. Phys. Chem. B 109, 17019 (2005).en_US
dc.identifier.citedreferenceS. Izvekov and A. Violi, J. Chem. Theory Comput. 2, 504 (2006).en_US
dc.identifier.citedreferenceM. Balthasar and M. Frenklach, Combust. Flame 140, 130 (2005).en_US
dc.identifier.citedreferenceM. Balthasar and M. Frenklach, Combust. Flame 30, 1467 (2005).en_US
dc.identifier.citedreferenceA. Violi, Combust. Flame 139, 279 (2004).en_US
dc.identifier.citedreferenceA. Violi, G. A. Voth, and A. F. Sarofim, Proc. Combust. Inst. 30, 1343 (2005).en_US
dc.identifier.citedreferenceA. Violi and G. A. Voth, High Performance Computing and Communications: Proceedings Lecture Notes in Computer Science 3726, 938–947 (2005).en_US
dc.identifier.citedreferenceA. Violi, G. A. Voth, and A. F. Sarofim, Proc. Combust. Inst. 30, 1343 (2005).en_US
dc.identifier.citedreferenceA. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975).en_US
dc.identifier.citedreferenceG. H. Gilmer, J. Cryst. Growth 36, 15 (1976).en_US
dc.identifier.citedreferenceA. F. Voter, Phys. Rev. B 34, 6819 (1986).en_US
dc.identifier.citedreferenceP. A. Maksym, Semicond. Sci. Technol. 3, 594 (1988).en_US
dc.identifier.citedreferenceK. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95, 1090 (1991).en_US
dc.identifier.citedreferenceJ. L. Blue, I. Beichl, and F. Sullivan, Phys. Rev. E 51, R867 (1995).en_US
dc.identifier.citedreferenceJ. B. McDermott, C. Libanati, C. La Marca, and M. T. Klein, Ind. Eng. Chem. Res. 29, 22 (1990).en_US
dc.identifier.citedreferenceA. Violi, J. Phys. Chem. A 109, 7781 (2005).en_US
dc.identifier.citedreferenceM. Frenklach, D. W. Clary, W. C. Gardiner, Jr., and S. E. Stein, Proc. Combust. Inst. 20, 887 (1985).en_US
dc.identifier.citedreferenceH. Wang and M. Frenklach, Combust. Flame 110, 173 (1997).en_US
dc.identifier.citedreferenceM. Frenklach and J. Warnatz, Combust. Sci. Technol. 51, 265 (1987).en_US
dc.identifier.citedreferenceA. Violi, A. F. Sarofim, and T. N. Truong, Combust. Flame 126, 1506 (2001).en_US
dc.identifier.citedreferenceA. D’Anna, A. Violi, and A. D’Alessio, Combust. Flame 121, 418 (2000).en_US
dc.identifier.citedreferenceA. Violi, A. D’Anna, and A. D’Alessio, Chemosphere 42, 463 (2001).en_US
dc.identifier.citedreferenceA. Violi, A. F. Sarofim, and G. A. Voth, Combust. Sci. Technol. 176, 991 (2004).en_US
dc.identifier.citedreferenceS. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).en_US
dc.identifier.citedreferenceD. W. Brenner, Phys. Rev. B 42, 9458 (1990).en_US
dc.identifier.citedreferenceD. W. Brenner, J. A. Harrison, C. T. White, and R. J. Colton, Thin Solid Films 206, 220 (1991).en_US
dc.identifier.citedreferenceD. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).en_US
dc.identifier.citedreferenceM. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987).en_US
dc.identifier.citedreferenceJ. D. Bittner and J. B. Howard, Proc. Combust. Inst. 18, 1105 (1981).en_US
dc.identifier.citedreferenceJ. D. Bittner and J. B. Howard, in Particulate Carbon: Formation During Combustion, edited by D. C. Siegla and G. W. Smith (Plenum, New York, 1981), p. 109.en_US
dc.identifier.citedreferenceA. Keller, R. Kovacs, and K.-H. Homann, Phys. Chem. Chem. Phys. 2, 1667 (2000).en_US
dc.identifier.citedreferenceV. Mikli, H. Kaerdi, P. Kulu, and M. Besterci, Proc. Estonian Acad. Sci. Eng. 7, 22 (2001).en_US
dc.identifier.citedreferenceA. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, Proc. Combust. Inst. 24, 973 (1992).en_US
dc.identifier.citedreferenceR. M. Carter and Y. Yuan, J. Phys.: Conf. Ser. 15, 177 (2005).en_US
dc.identifier.citedreferenceM. L. Connolly, J. Am. Chem. Soc. 107, 1118 (1985).en_US
dc.identifier.citedreferenceJ.-L. Faulon, G. A. Carlson, and P. G. Hatcher, Energy Fuels 7, 1062 (1993).en_US
dc.identifier.citedreferenceM. B. Rao, Carbon 29, 813 (1991).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.