Show simple item record

Measuring asymmetric temporal interdependencies in simulated and biological networks

dc.contributor.authorDzakpasu, Rhondaen_US
dc.contributor.authorPatel, Kinjalen_US
dc.contributor.authorRobinson, Natalliaen_US
dc.contributor.authorHarrington, Melissa A.en_US
dc.contributor.authorŻochowski, Michałen_US
dc.date.accessioned2011-11-15T16:10:43Z
dc.date.available2011-11-15T16:10:43Z
dc.date.issued2006-12en_US
dc.identifier.citationDzakpasu, Rhonda; Patel, Kinjal; Robinson, Natallia; Harrington, Melissa A.; Żochowski, Michał (2006). "Measuring asymmetric temporal interdependencies in simulated and biological networks." Chaos 16(4): 043121-043121-8. <http://hdl.handle.net/2027.42/87883>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87883
dc.description.abstractWe use a newly developed metric to characterize asymmetric temporal interdependencies in networks of coupled dynamical elements. We studied the formation of temporal ordering in a system of coupled Rössler oscillators for different connectivity ratios and network topologies and also applied the metric to investigate the functional structure of a biological network (cerebral ganglia of Helix snail). In the former example we show how the local ordering evolves to the global one as a function of structural parameters of the network, while in the latter we show spontaneous emergence of functional interdependence between two groups of electrodes.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMeasuring asymmetric temporal interdependencies in simulated and biological networksen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Physics and Biophysics Research Division University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Biological Sciences Delaware State University, Dover, Delaware 19901en_US
dc.identifier.pmid17199399en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87883/2/043121_1.pdf
dc.identifier.doi10.1063/1.2401130en_US
dc.identifier.sourceChaosen_US
dc.identifier.citedreferenceC. Deransart, B. Hellwig, M. Heupel-Reuter, J. F. Leger, D. Heck, and C. H. Lucking, Epilepsia 44, 1513 (2003).en_US
dc.identifier.citedreferenceR. Ferri, C. J. Stam, B. Lanuzza, F. I. Cosentino, M. Elia, S. A. Musumeci, and G. Pennisi, Clin. Neurophysiol. 115, 1202 (2004).en_US
dc.identifier.citedreferenceW. Singer, Neuron 24, 49 (1999).en_US
dc.identifier.citedreferenceC. M. Gray, Neuron 24, 31 (1999).en_US
dc.identifier.citedreferenceC. von der Malsburg, Ber. Bunsenges. Phys. Chem. 89, 703 (1985).en_US
dc.identifier.citedreferenceF. Varela, J-P. Lachaux, E. Rodriguez, and J. Martinerie, Nat. Rev. Neurosci. 2, 229 (2001).en_US
dc.identifier.citedreferenceM. Stopfer, S. Bhagavan, B. H. Smith, and G. Laurent, Nature (London) 390, 70 (1997).en_US
dc.identifier.citedreferenceG. Q. Bi and M. M. Poo, Nature (London) 401, 792 (1998).en_US
dc.identifier.citedreferenceB. H. Singer, M. Derchansky, P. L. Carlen, and Michal Żochowski, Phys. Rev. E 73, 021910 (2006).en_US
dc.identifier.citedreferenceE. N. Brown, M. Okatan, and M. A. Wilson, Neural Comput. 17, 1927 (2005).en_US
dc.identifier.citedreferenceP. A. W. Lewis and D. R. Cox, Proceedings, Sixth Berkeley Symposium on Probability and Mathematical Statistics, 1972, Vol. 3, pp. 401–448.en_US
dc.identifier.citedreferenceM. S. Bartlett, An Introduction to Stochastic Processes, 2nd ed. (Cambridge University Press, Cambridge, 1966).en_US
dc.identifier.citedreferenceG. P. Moore, D. H. Perkel, and G. L. Gerstein, Biophys. J. 7, 419 (1967).en_US
dc.identifier.citedreferenceD. H. Perkel and G. L. Gerstein, Science 164, 828 (1969).en_US
dc.identifier.citedreferenceD. R. Brillinger, Ann. Probab. 3, 909 (1975).en_US
dc.identifier.citedreferenceL. Lin, R. Osan, S. Shoham, W. Jin, W. Zuo, and J. Z. Tsien, Proc. Natl. Acad. Sci. U.S.A. 102, 6125 (2005).en_US
dc.identifier.citedreferenceL. Abbott and E. Salinas, J. Comput. Neurosci. 1, 89 (1994).en_US
dc.identifier.citedreferenceK. Zhang, I. Ginsburg, B. L. McNaughton, and T. J. Sejnowski, J. Neurophysiol. 79, 1017 (1998).en_US
dc.identifier.citedreferenceA. F. Karr, E. S. Chornoboy, and L. P. Schramm, Biol. Cybern. 59, 265 (1988).en_US
dc.identifier.citedreferenceI. Baruchi and E. Ben-Jacob, Neuroinformatics 2, 333 (2004).en_US
dc.identifier.citedreferenceM. Żochowski and R. Dzakpasu, “J. Phys. A 37, 3823 (2004).en_US
dc.identifier.citedreferenceR. Dzakpasu and M. Żochowski, Physica D 208, 115 (2005).en_US
dc.identifier.citedreferenceM. S. Baptista, T. Pereira, J. C. Sartorelli, I. L. Caldas, and J. Kurths, Physica D 212, 216 (2005).en_US
dc.identifier.citedreferenceM. S. Baptista and J. Kurths, Phys. Rev. E 72, 045202 (2005).en_US
dc.identifier.citedreferenceJ. Brea, D. F. Russell, and A. B. Neiman, Chaos 16, 026111 (2006).en_US
dc.identifier.citedreferenceT. Schreiber and A. Kaiser, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14, 1987 (2004).en_US
dc.identifier.citedreferenceR. Quian Quiroga, T. Kreuz, and P. Grassberger, Phys. Rev. E, 66, 041904, 2002.en_US
dc.identifier.citedreferenceM. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 78, 4193 (1997).en_US
dc.identifier.citedreferenceM. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).en_US
dc.identifier.citedreferenceD. Pazo, A. M. Zaks, and J. Kurths, Chaos 13, 309 (2003).en_US
dc.identifier.citedreferenceG. V. Osipov, A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Phys. Rev. E 55, 2353 (1997).en_US
dc.identifier.citedreferenceV. Braitenberg and A. Schüz, Cortex: Statistics and Geometry of Neuronal Connectivity (Springer-Verlag, Berlin, 1998).en_US
dc.identifier.citedreferenceD. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).en_US
dc.identifier.citedreferenceI. Belykh, V. Belykh, K. Nevidin, and M. Hasler, Chaos 13, 165 (2003).en_US
dc.identifier.citedreferenceA. Gelperin and D. W. Tank, Nature (London) 345, 437 (1990).en_US
dc.identifier.citedreferenceD. Kleinfeld, K. R. Delaney, M. S. Fee, J. A. Flores, D. W. Tank, and A. Gelperin, J. Neurophysiol. 72, 1402 (1994).en_US
dc.identifier.citedreferenceS. Kawahara, S. Toda, Y. Suzuki, and Y. Kirino, J. Exp. Biol. 200, 1851 (1997).en_US
dc.identifier.citedreferenceA. Gelperin, J. Exp. Biol. 202, 1855 (1999).en_US
dc.identifier.citedreferenceK. R. Delaney, A. Gelperin, M. S. Fee, J. A. Flores, R. Gervais, D. W. Tank, and D. Kleinfeld, Proc. Natl. Acad. Sci. U.S.A. 91, 669 (1994).en_US
dc.identifier.citedreferenceL. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1975).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.