Show simple item record

The effect of gravity on liquid plug propagation in a two-dimensional channel

dc.contributor.authorSuresh, Vinoden_US
dc.contributor.authorGrotberg, J. B.en_US
dc.date.accessioned2011-11-15T16:11:22Z
dc.date.available2011-11-15T16:11:22Z
dc.date.issued2005-03en_US
dc.identifier.citationSuresh, V.; Grotberg, J. B. (2005). "The effect of gravity on liquid plug propagation in a two-dimensional channel." Physics of Fluids 17(3): 031507-031507-15. <http://hdl.handle.net/2027.42/87914>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87914
dc.description.abstractThe effect of plug propagation speed and gravity on the quasisteady motion of a liquid plug in a two-dimensional liquid-lined channel oriented at an angle αα with respect to gravity is studied. The problem is motivated by the transport of liquid plugs instilled into pulmonary airways in medical treatments such as surfactant replacement therapy, drug delivery, and liquid ventilation. The capillary number Ca is assumed to be small, while the Bond number Bo is arbitrary. Using matched asymptotic expansions and lubrication theory, expressions are obtained for the thickness of the trailing films left behind by the plug and the pressure drop across it as functions of Ca, Bo, αα and the thickness of the precursor films. When the Bond number is small it is found that the trailing film thickness and the flow contribution to the pressure drop scale as Ca2/3Ca2∕3 at leading order with coefficients that depend on Bo and αα. The first correction to the film thickness is found to occur at O(Ca)O(Ca) compared to O(Ca4/3)O(Ca4∕3) in the Bo = 0Bo=0 case. Asymmetry in the liquid distribution is quantified by calculating the ratio of liquid volumes above and below the centerline of the channel, VṘ. VR = 1VR=1 at Bo = 0Bo=0, indicating a symmetric distribution, and decreases with Bo and Ca, but increases with the plug length LpLp. The decrease of VRVR with Ca suggests that higher propagation speeds in small airways may result in less homogenous liquid distribution, which is in contrast to the expected effect in large airways. For given values of the other parameters, a maximum capillary number CacCac is identified above which the plug will eventually rupture. When the Bond number becomes equal to an orientation-dependent critical value BocBoc, it is found that the scaling of the film thickness and pressure drop change to Ca1/2Ca1∕2 and Ca1/6Ca1∕6, respectively. It is shown that this scaling is valid for small increments of the Bond number over its critical value, Bo = Boc+BCa1/6Bo=Boc+BCa1∕6, but for higher Bond numbers the asymptotic approach breaks down.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe effect of gravity on liquid plug propagation in a two-dimensional channelen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87914/2/031507_1.pdf
dc.identifier.doi10.1063/1.1863853en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceL. K. Hastings, W. H. Renfro, and R. Sharma, “Comparison of beractant and calfactant in a neonatal intensive care unit,” Am. J. Health Syst. Pharm. 61, 257 (2004).en_US
dc.identifier.citedreferenceA. H. Jobe, “Pulmonary surfactant therapy,” N. Engl. J. Med. 328, 861 (1993).en_US
dc.identifier.citedreferenceH. Yapicioglu, D. Yildizdas, I. Bayram, Y. Sertdemir, and H. L. Yilmaz, “The use of surfactant in children with acute respiratory distress syndrome: Efficacy in terms of oxygenation, ventilation, and mortality,” Pulm. Pharmacol. Ther. 16, 327 (2003).en_US
dc.identifier.citedreferenceB. P. Fuhrman, P. R. Paczan, and M. DeFrancisis, “Perfluorocarbon-associated gas exchange,” Crit. Care Med. 19, 712 (1991).en_US
dc.identifier.citedreferenceR. B. Hirschl, M. Croce, D. Gore, H. Wiedemann, K. Davis, J. Zwischenberger, and R. H. Bartlett, “Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome,” Am. J. Respir. Crit. Care Med. 165, 781 (2002).en_US
dc.identifier.citedreferenceP. N. Cox, H. Frndova, O. Karlsson, S. Holowka, and C. A. Bryan, “Fluorocarbons facilitate lung recruitment,” Intensive Care Med. 29, 2297 (2003).en_US
dc.identifier.citedreferenceK. Mikawa, K. Nishina, Y. Takao, and H. Obara, “Efficacy of partial liquid ventilation in improving acute lung injury induced by intratracheal acidified infant formula: Determination of optimal dose and positive end-expiratory pressure level,” Crit. Care Med. 32, 209 (2004).en_US
dc.identifier.citedreferenceD. J. Weiss, T. P. Strandjord, J. C. Jackson, J. G. Clark, and D. Liggitt, “Perfluorochemical liquid-enhanced adenoviral vector distribution and expression in lungs of spontaneously breathing rodents,” Exp. Lung Res. 25, 317 (1999).en_US
dc.identifier.citedreferenceD. J. Smith, L. M. Gambone, T. Tarara, D. R. Meays, L. A. Dellamary, C. M. Woods, and J. Weers, “Liquid dose pulmonary instillation of gentamicin PulmoSpheres (R) formulations: Tissue distribution and pharmacokinetics in rabbits,” Pharm. Res. 18, 1556 (2001).en_US
dc.identifier.citedreferenceJ. J. Haitsma, U. Lachmann, and B. Lachmann, “Exogenous surfactant as a drug delivery agent,” Adv. Drug Delivery Rev. 47, 197 (2001).en_US
dc.identifier.citedreferenceY. L. Zhang, O. K. Matar, and R. V. Craster, “A theoretical study of chemical delivery within the lung using exogenous surfactant,” Med. Eng. Phys. 25, 115 (2003).en_US
dc.identifier.citedreferenceS. Iqbal, S. Ritson, I. Prince, J. Denyer, and M. L. Everard, “Drug delivery and adherence in young children,” Pediatr. Pulmonol 37, 311, (2004).en_US
dc.identifier.citedreferenceP. B. Myrdal, K. L. Karlage, S. W. Stein, B. A. Brown, and A. Haynes, “Optimized dose delivery of the peptide cyclosporine using hydrofluoroalkane-based metered dose inhalers,” J. Pharm. Sci. 93, 1054 (2004).en_US
dc.identifier.citedreferenceF. F. Espinosa and R. D. Kamm, “Meniscus formation during tracheal instillation of surfactant,” J. Appl. Physiol. 85, 266 (1998).en_US
dc.identifier.citedreferenceK. J. Cassidy, J. L. Bull, M. R. Glucksberg, C. A. Dawson, S. T. Haworth, R. B. Hirschl, N. Gavriely, and J. B. Grotberg, “A rat lung model of instilled liquid transport in the pulmonary airways,” J. Appl. Physiol. 90, 1955 (2001).en_US
dc.identifier.citedreferenceJ. C. Anderson, R. C. Molthen, C. A. Dawson, S. T. Haworth, J. L. Bull, M. R. Glucksberg, and J. B. Grotberg, “Effect of ventilation rate on instilled surfactant distribution in the pulmonary airways of rats,” J. Appl. Physiol. 97, 45 (2004).en_US
dc.identifier.citedreferenceJ. L. Bull, S. Tredici, E. Komori, D. O. Brant, J. B. Grotberg, and R. B. Hirschl, “Distribution dynamics of perfluorocarbon delivery to the lungs: An intact rabbit model,” J. Appl. Physiol. 96, 1633 (2004).en_US
dc.identifier.citedreferenceK. J. Cassidy, N. Gavriely, and J. B. Grotberg, “Liquid plug flow in straight and bifurcating tubes,” J. Biomech. Eng. 123, 580 (2001).en_US
dc.identifier.citedreferenceV. Sauret, R. M. Halson, I. W. Brown, J. S. Fleming, and A. G. Bailey, “Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images,” J. Anat. 200, 123 (2002).en_US
dc.identifier.citedreferenceF. P. Bretherton, “The motion of long bubbles in tubes,” J. Fluid Mech. 10, 166 (1961).en_US
dc.identifier.citedreferenceC.-W. Park and G. M. Homsy, “Two-phase displacement in Hele Shaw cells: theory,” J. Fluid Mech. 139, 291 (1984).en_US
dc.identifier.citedreferenceH. Wong, C. J. Radke, and S. Morris, “The motion of long bubbles in polygonal capillaries. Part 1. Thin films,” J. Fluid Mech. 292, 71 (1995).en_US
dc.identifier.citedreferenceH. Wong, C. J. Radke, and S. Morris, “The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow,” J. Fluid Mech. 292, 95 (1995).en_US
dc.identifier.citedreferenceL. W. Schwartz, H. M. Princen, and A. D. Kiss, “On the motion of bubbles in capillary tubes,” J. Fluid Mech. 172, 259 (1986).en_US
dc.identifier.citedreferenceG. M. Ginley and C. J. Radke, “Influence of soluble surfactants on the flow of long bubbles through a cylindrical capillary,” ACS Symp. Ser. 396, 480 (1988).en_US
dc.identifier.citedreferenceJ. Ratulowski and H.-C. Chang, “Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries,” J. Fluid Mech. 210, 303 (1990).en_US
dc.identifier.citedreferenceC.-W. Park, “Influence of soluble surfactants on the motion of finite bubble in a capillary tube,” Phys. Fluids A 4, 2335 (1992).en_US
dc.identifier.citedreferenceK. J. Stebe and D. Bathés-Biesel, “Marangoni effects of adsorption-desorption controlled surfactants on the leading end of an infinitely long bubble in a capillary,” J. Fluid Mech. 286, 25 (1995).en_US
dc.identifier.citedreferenceA. Mazouchi and G. M. Homsy, “Thermocapillary migration of long bubbles in cylindrical capillary tubes,” Phys. Fluids 12, 542 (2000).en_US
dc.identifier.citedreferenceA. Mazouchi and G. M. Homsy, “Thermocapillary migration of long bubbles in polygonal tubes. I. Theory,” Phys. Fluids 13, 1594 (2001).en_US
dc.identifier.citedreferenceD. Halpern and O. E. Jensen, “A semi-infinite bubble advancing into a planar tapered channel,” Phys. Fluids 14, 431 (2002).en_US
dc.identifier.citedreferenceP. D. Howell, S. L. Waters, and J. B. Grotberg, “The propagation of a liquid bolus along a liquid-lined flexible tube,” J. Fluid Mech. 406, 309 (2000).en_US
dc.identifier.citedreferenceO. E. Jensen, M. K. Horsburgh, D. Halpern, and D. P. Gaver, “The steady propagation of a bubble in a flexible-walled channel: Asymptotic and computational models,” Phys. Fluids 14, 443 (2002).en_US
dc.identifier.citedreferenceS. L. Waters and J. B. Grotberg, “The propagation of a surfactant laden liquid plug in a capillary tube,” Phys. Fluids 14, 471 (2002).en_US
dc.identifier.citedreferenceM. H. Jensen, A. Libchaber, P. Pelce, and G. Zocchi, “Effect of gravity on the Saffman–Taylor meniscus: Theory and experiment,” Phys. Rev. A 35, 2221 (1987).en_US
dc.identifier.citedreferenceD. Lasseux and M. Quintard, “Film thickness behind a receding meniscus,” C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers 313, 1375 (1991).en_US
dc.identifier.citedreferenceD. Lasseux, “Drainage in a capillary—A complete approximated description of the interface,” C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron. 321, 125 (1995).en_US
dc.identifier.citedreferenceD. Quéré, “Fluid coating on a fiber,” Annu. Rev. Fluid Mech. 31, 347 (1999).en_US
dc.identifier.citedreferenceL. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 42 (1942).en_US
dc.identifier.citedreferenceB. V. Derjaguin, “On the thickness of the liquid film adhering to the walls of a vessel after emptying,” Acta Physicochim. URSS 20, 349 (1943).en_US
dc.identifier.citedreferenceS. D. R. Wilson, “The drag-out problem in film coating theory,” J. Eng. Math. 16, 209 (1982).en_US
dc.identifier.citedreferenceB.V. Derjaguin and S.M. Levi, Film Coating Theory (Focal, London, 1964).en_US
dc.identifier.citedreferenceA. de Ryck and D. Quere, “Gravity and inertia effects in plate coating,” J. Colloid Interface Sci. 203, 278 (1998).en_US
dc.identifier.citedreferenceD. A. White and J. A. Tallmadge, “Theory of drag out of liquids on flat plates,” Chem. Eng. Sci. 20, 33 (1965).en_US
dc.identifier.citedreferenceJ. R. Cash, G. Moore, and R. W. Wright, “An automatic continuation strategy for the solution of singularly perturbed linear 2-point boundary-value-problems,” J. Comput. Phys. 122, 266 (1995).en_US
dc.identifier.citedreferenceJ. R. Cash, G. Moore, and R. W. Wright, “An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems,” ACM Trans. Math. Softw. 27, 245 (2001).en_US
dc.identifier.citedreferenceD. M. King, Z. D. Wang, H. J. Palmer, B. A. Holm, and R. H. Notter, “Bulk shear viscosities of endogenous and exogenous lung surfactants,” Am. J. Physiol. 282, L277 (2002).en_US
dc.identifier.citedreferenceM. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, Boston, 1964).en_US
dc.identifier.citedreferenceP. Aussillous and D. Quere, “Quick deposition of a fluid on the wall of a tube,” Phys. Fluids 12, 2367 (2000).en_US
dc.identifier.citedreferenceA. de Ryck, “The effect of weak inertia on the emptying of a tube,” Phys. Fluids 14, 2102 (2002).en_US
dc.identifier.citedreferenceM. D. Giavedoni and F. A. Saita, “The axisymmetric and plane cases of a gas phase steadily displacing a Newtonian liquid—A simultaneous solution of the governing equations,” Phys. Fluids 9, 2420 (1997).en_US
dc.identifier.citedreferenceM. D. Giavedoni and F. A. Saita, “The rear meniscus of a long bubble steadily displacing a Newtonian liquid in a capillary tube,” Phys. Fluids 11, 786 (1999).en_US
dc.identifier.citedreferenceM. Heil, “Finite Reynolds number effects in the Bretherton problem,” Phys. Fluids 13, 2517 (2001).en_US
dc.identifier.citedreferenceH. Fujioka and J. B. Grotberg, “Steady propagation of a liquid plug in a two-dimensional channel,” J. Biomech. Eng.126, 567 (2004).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.