Show simple item record

A model of flow and surfactant transport in an oscillatory alveolus partially filled with liquid

dc.contributor.authorWei, Hsien-Hungen_US
dc.contributor.authorFujioka, Hidekien_US
dc.contributor.authorHirschl, Ronald B.en_US
dc.contributor.authorGrotberg, James B.en_US
dc.date.accessioned2011-11-15T16:11:36Z
dc.date.available2011-11-15T16:11:36Z
dc.date.issued2005-03en_US
dc.identifier.citationWei, Hsien-Hung; Fujioka, Hideki; Hirschl, Ronald B.; Grotberg, James B. (2005). "A model of flow and surfactant transport in an oscillatory alveolus partially filled with liquid." Physics of Fluids 17(3): 031510-031510-16. <http://hdl.handle.net/2027.42/87925>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/87925
dc.description.abstractThe flow and transport in an alveolus are of fundamental importance to partial liquid ventilation, surfactant transport, pulmonary drug administration, cell-cell signaling pathways, and gene therapy. We model the system in which an alveolus is partially filled with liquid in the presence of surfactants. By assuming a circular interface due to sufficiently strong surface tension and small surfactant activity, we combine semianalytical and numerical techniques to solve the Stokes flow and the surfactant transport equations. In the absence of surfactants, there is no steady streaming because of reversibility of Stokes flow. The presence of surfactants, however, induces a nontrivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns (e.g., number of vortices) particularly depend on the ratio of inspiration to expiration periods (I:EI:E ratio) and the sorption parameter KK. For an insoluble surfactant, a single vortex is formed when the I:EI:E ratio is either smaller or larger than 1:1, but the recirculations have opposite directions in the two cases. A soluble surfactant can lead to more complex flow patterns such as three vortices or saddle-point flow structures. The estimated unsteady velocity is 10−3 cm/s10−3cm∕s, and the corresponding Péclet number for transporting respiratory gas is O(1)O(1). For a cell-cell signaling molecule such as surfactant-associated protein-A for regulating surfactant secretion, the Péclet number could be O(10)O(10) or higher. Convection is either comparable to or more dominant than diffusion in these processes. The estimated steady velocity ranges from 10−6 to 10−4 cm/s10−6to10−4cm∕s, depending on I:EI:E and KK, and the corresponding steady Péclet number is between 10−8/Dm10−8∕Dm and 10−6/Dm10−6∕Dm (DmDm is the molecular diffusivity with units of cm2/scm2∕s). Therefore, for Dm ⩽ 10−8 cm2/sDm⩽10−8cm2∕s, the convective transport dominates.en_US
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA model of flow and surfactant transport in an oscillatory alveolus partially filled with liquiden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumBiomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Surgery, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumBiomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/87925/2/031510_1.pdf
dc.identifier.doi10.1063/1.1830487en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceJ. Bastacky, C. Y. C. Lee, J. Goerke, H. Koushafar, D. Yager, L. Kenaga, T. P. Speed, Y. Chien, and J. A. Clements, “Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung,” J. Appl. Physiol. 79, 1615 (1995).en_US
dc.identifier.citedreferenceA. Podgorski and L. Gradon, “An improved mathematical model of hydrodynamic self-cleansing of pulmonary alveoli,” Ann. Occup. Hyg. 37, 347 (1993).en_US
dc.identifier.citedreferenceF. F. Espinosa and R. D. Kamm, “Thin layer flows due to surface tension gradients over a membrane undergoing non-uniform, periodic strain,” Ann. Biomed. Eng. 25, 913 (1997).en_US
dc.identifier.citedreferenceD. Zelig and S. Haber, “Hydrodynamics cleansing of pulmonary alveoli,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 63, 195 (2003).en_US
dc.identifier.citedreferenceH.-H. Wei, S. W. Beninitendi, D. Halpern, and J. B. Grotberg, “Cycle-induced flow and transport in a model of alveolar liquid lining,” J. Fluid Mech. 483, 1 (2003).en_US
dc.identifier.citedreferenceH. Wong, D. Rumschitzki, and C. Maldarelli, “Marangoni effects on the motion of an expanding or contracting bubble pinned at a submerged tube tip,” J. Fluid Mech. 379, 279 (1999).en_US
dc.identifier.citedreferenceM. R. Davidson and J. M. Fitz-Gerald, “Flow patterns in models of small airway units of the lung,” J. Fluid Mech. 52, 161 (1972).en_US
dc.identifier.citedreferenceS. Haber, J. P. Butler, H. Brenner, I. Emanuel, and A. Tsuda, “Shear flow over a self-similar expanding pulmonary alveolus during rhythmical breathing,” J. Fluid Mech. 405, 243 (2000).en_US
dc.identifier.citedreferenceH. Wong, D. Rumschitzki, and C. Maldarelli, “On the surfactant mass balance at a deforming fluid interface,” Phys. Fluids 8, 3203 (1996).en_US
dc.identifier.citedreferenceJ. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice Hall, Englewood Cliffs, NJ, 1983).en_US
dc.identifier.citedreferenceN. J. DeMestre and D. C. Guiney, “Low Reynolds number oscillatory flow through a hole in a wall,” J. Fluid Mech. 47, 657 (1971).en_US
dc.identifier.citedreferenceG. Green, “Solution of some problems in viscous flow,” Philos. Mag. 35, 250 (1944).en_US
dc.identifier.citedreferenceJ. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer, Berlin 2002).en_US
dc.identifier.citedreferenceC.-M. Lim, Y. Koh, T. S. Shim, S. D. Lee, W. S. Kim, D. S. Kim, and W. D. Kim, “The effect of varying inspiratory to expiratory ratio on gas exchange in partial liquid ventilation,” Chest 116, 1032 (1999).en_US
dc.identifier.citedreferenceA. Podgorski and L. Gradon, “Dynamics of pulmonary surfactant system and its role in alveolar cleansing,” Ann. Occup. Hyg. 34, 137 (1990).en_US
dc.identifier.citedreferenceM. K. White and D. S. Strayer, “Survival signaling in type II pneumocytes activated by surfactant protein-A,” Exp. Cell Res. 280, 270 (2002).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.