Show simple item record

Biorefinery sustainability assessment

dc.contributor.authorSchaidle, Joshua A.en_US
dc.contributor.authorMoline, Christopher J.en_US
dc.contributor.authorSavage, Phillip E.en_US
dc.date.accessioned2011-12-05T18:31:40Z
dc.date.available2013-02-01T20:26:16Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationSchaidle, Joshua A.; Moline, Christopher J.; Savage, Phillip E. (2011). "Biorefinery sustainability assessment." Environmental Progress & Sustainable Energy 30(4): 743-753. <http://hdl.handle.net/2027.42/88001>en_US
dc.identifier.issn1944-7442en_US
dc.identifier.issn1944-7450en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88001
dc.description.abstractThis article presents a comparative sustainability assessment of three biorefineries that produce liquid fuels used in current infrastructure. The three options considered are biochemical production of ethanol from grain and from cellulosic feedstocks and thermochemical production of Fischer‐Tropsch diesel from biomass‐derived syngas. These biorefineries were compared using numerous environmental, economic, and social metrics, with numerical values derived from a thorough review of recent literature. For each of the three biorefinery options, the metrics were not determined from a specific process design, but from a variety of different designs reported in literature. Where necessary, corn was selected as the feedstock for grain ethanol and switchgrass was selected for cellulosic ethanol and Fischer‐Tropsch diesel. These sustainability metrics were used in an Analytic Hierarchy Process decision analysis to compare the sustainability of the different biorefineries. Thus, a new decision‐making tool has been created in which the user can assign different weights to each category and its metrics. This tool was used to explore the influence of different weights, different market conditions, and uncertainties in the values of the metrics on the relative sustainability of the different options. Based on the results of this assessment, cellulosic ethanol biorefineries are modestly more sustainable than grain ethanol and Fischer‐Tropsch diesel. Grain ethanol was favorable economically whereas Fischer‐Tropsch diesel had the highest score on the societal metrics. © 2010 American Institute of Chemical Engineers Environ Prog, 2010en_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.subject.otherAlternative Energyen_US
dc.subject.otherBiofuelsen_US
dc.subject.otherAnalytic Hierarchyen_US
dc.subject.otherEthanolen_US
dc.subject.otherFischer‐Tropsch Dieselen_US
dc.titleBiorefinery sustainability assessmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelCivil and Environmental Engineeringen_US
dc.subject.hlbsecondlevelNatural Resources and Environment Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88001/1/10516_ftp.pdf
dc.identifier.doi10.1002/ep.10516en_US
dc.identifier.sourceEnvironmental Progress & Sustainable Energyen_US
dc.identifier.citedreferenceWhat is a biorefinery? Biomass Research, National Renewable Energy Laboratory, Department of Energy. Available at: http://www.nrel.gov/biomass/biorefinery.html. Accessed on March 5, 2009.en_US
dc.identifier.citedreferenceMcAloon, A., Taylor, F., Yee, W., Ibsen, K., & Wooley, R. ( 2000 ). Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks, Golden, CO: National Renewable Energy Laboratory.en_US
dc.identifier.citedreferenceUnited States Environmental Protection Agency. Combined heat and power: An energy‐efficient choice for the ethanol industry. Available at: http://www.epa.gov/CHP/documents/ethanol_fs.pdf. Accessed on March 10, 2009.en_US
dc.identifier.citedreferenceHamelinck, C.N., van Geertje, H., & Faaij, A. ( 2005 ). Ethanol from lignocellulosic biomass: Techno‐economic performance in short‐, middle‐ and long‐term. Biomass and Bioenergy, 28, 384 – 410.en_US
dc.identifier.citedreferenceVan der Laan, G.P., & Beenackers, A. ( 1999 ). Kinetics and selectivity of the Fischer‐Tropsch synthesis: A literature review. Catalysis Reviews Science and Engineering, 41, 255 – 318.en_US
dc.identifier.citedreferenceFaaij, A., van Ree, R., Waldheim, L., Olsson, E., Oudhuis, A., Van Wijk, A., Daey Ouwens, C., & Turkenburg, W. ( 1997 ). Gasification of biomass wastes and residues for electricity production. Biomass and Bioenergy, 12, 387 – 407.en_US
dc.identifier.citedreferenceBoerrigter, H., & den Uil, H. ( 2002 ). Green diesel from biomass via Fischer‐Tropsch synthesis: New insights in gas cleaning and process design. In Pyrolysis and Gasification of Biomass and Waste Meeting, October 30 to September 1, Strasbourg France.en_US
dc.identifier.citedreferenceTijmensen, M.J.A., Faaij, A.P.C., Hamelinck, C.N., & van Hardeveld, M.R.M. ( 2002 ). Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass and Bioenergy, 23, 129 – 152.en_US
dc.identifier.citedreferenceSaaty, T.L. ( 1980 ). The analytic hierarchy process, New York, NY: McGraw‐Hill.en_US
dc.identifier.citedreferenceSaaty, T.L. ( 1990 ). Multicriteria decision making: The analytic hierarchy process, Pittsburgh, PA: RWS Publications.en_US
dc.identifier.citedreferenceElkington, J. ( 1998 ). Cannibals with Forks: The triple bottom line of the 21st century, Stoney Creek, CT: New Society Publishers.en_US
dc.identifier.citedreferenceElkington, J. ( 2004 ). Enter the triple bottom line. In A. Henriques & J. Richardson (Eds.), The triple bottom line: Does it all add up? (pp. 1 – 16 ), London, UK: Earthscan.en_US
dc.identifier.citedreferenceWang, M., Wu, M., & Huo, H. ( 2007 ). Life‐cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environmental Research Letters, 2, 024001.en_US
dc.identifier.citedreferenceUnnasch, S. ( 2005 ). Alcohol fuels from biomass: Well‐to‐wheel energy balance. In International Symposium on Alcohol Fuels, September 28, San Diego, CA.en_US
dc.identifier.citedreferenceWang, M., Wu, M., & Huo, H. ( 2007 ). Life‐cycle energy and greenhouse gas results of Fischer‐Tropsch diesel produced from natural gas, coal, and biomass. In SAE Government/Industry Meeting, May 14–16, Washington, DC.en_US
dc.identifier.citedreferencePimentel, D. ( 1991 ). Ethanol fuels: Energy security, economics, and the environment. Journal of Agricultural and Environmental Ethics, 4, 1 – 13.en_US
dc.identifier.citedreferencePimentel, D. ( 2002 ). Limits of biomass utilization. Encyclopedia of physical science and technology ( 3rd Edition, pp. 159 – 171 ), New York: Academic Press.en_US
dc.identifier.citedreferencePatzek, T. ( 2004 ). Thermodynamics of the corn‐ethanol biofuel cycle. Critcal Reviews in Plant Sciences, 23, 519 – 567.en_US
dc.identifier.citedreferencePimentel, D., & Patzek, T. ( 2005 ). Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14, 65 – 76.en_US
dc.identifier.citedreferenceSheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., & Nelson, R. ( 2004 ). Energy and environmental aspects of using corn stover for fuel ethanol. Journal of Industrial Ecology, 7, 117 – 146.en_US
dc.identifier.citedreferenceMorey, R., Tiffany, D., & Hatfield, D. ( 2006 ). Biomass for electricity and process heat at ethanol plants. Applied Engineering in Agriculture, 22, 723 – 728.en_US
dc.identifier.citedreferenceKim, S., & Dale, B. ( 2005 ). Environmental aspects of ethanol derived from no‐tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions. Biomass and Bioenergy, 28, 475 – 489.en_US
dc.identifier.citedreferenceWu, M., Wu, Y., & Wang, M. ( 2006 ). Energy and emission benefits of alternative transportation liquid fuels from switchgrass: A fuel life cycle assessment. Biotechnology Progress, 22, 1012 – 1024.en_US
dc.identifier.citedreferenceJungbluth, N., Frischknecht, R., Emmenegger, M., Steiner, R., & Tuchschmid, M. ( 2007 ). Life‐cycle assessment of BTL‐fuel production: Life cycle impact assessment and interpretation. Renew: Sustainable energy systems for transport. Available at: http://www.renew‐fuel.com/fs_documents.php. Accessed on March 11, 2009.en_US
dc.identifier.citedreferenceMueller, S., & Plevin, R. ( 2008 ). Determining climate benefits: Global warming intensity of ethanol. BioCycle Energy, 49, 50.en_US
dc.identifier.citedreferenceCombined Heat and Power Partnership, United States Environmental Protection Agency. Impact of combined heat and power on energy use and carbon emissions in the dry mill ethanol process. Available at: www.epa.gov/chp/documents/ethanol_energy_balance.pdf. Accessed on March 10, 2009.en_US
dc.identifier.citedreferenceFarrel, A., Plevin, R., Turner, B., Jones, A., O'Hare, M., & Kammen, D. ( 2006 ). Ethanol can contribute to energy and environmental goals. Science, 311, 506 – 508.en_US
dc.identifier.citedreferenceWu, M., Wang, M., & Huo, H. ( 2006 ). Fuel‐cycle assessment of selected bioethanol production pathways in the United States. Center for Transportation Research, Argonne National Laboratory. Available at: http://www.transportation.anl.gov/pdfs/TA/377.pdf. Accessed on March 4, 2009.en_US
dc.identifier.citedreferenceSpatari, S., Zhang, Y., & MacLean, H. ( 2005 ). Life cycle assessment of switchgrass‐ and corn stover‐derived ethanol‐fueled automobiles. Environmental Science and Technology, 39, 9750 – 9758.en_US
dc.identifier.citedreferenceSimpson, T., Sharpley, A., Howarth, R., Paerl, H., & Mankin, K. ( 2008 ). The new gold rush: fueling ethanol production while protecting water quality. Journal of Environmental Quality, 37, 318 – 324.en_US
dc.identifier.citedreferenceKim, S., & Dale, B. ( 2004 ). Cumulative energy and global warming impact from the production of biomass for biobased products. Journal of Industrial Ecology, 7, 147 – 162.en_US
dc.identifier.citedreferencePatzek, T.W. ( 2007 ). A first‐law thermodynamic analysis of the corn ethanol cycle. Natural Resources Research, 15, 255 – 270.en_US
dc.identifier.citedreferenceBiomass feedstock composition and property database. Biomass program, energy efficiency and renewable energy. U. S. Department of Energy. Available at: http://www1.eere.energy.gov/biomass/feedstock_databases.html. Accessed on January 29, 2010.en_US
dc.identifier.citedreferenceKeeney, D., & Muller, M. ( 2006 ). Water use by ethanol plants: Potential challenges, Minneapolis, MN: Institute for Agriculture and Trade Policy.en_US
dc.identifier.citedreferencePhilips, S., Aden, A., Jechura, J., & Dayton, D. ( 2007 ). Thermochemical ethanol via indirect gasficiation and mixed alcohol synthesis of lignocellulosic biomass, Golden, CO: National Renewable Energy Lab.en_US
dc.identifier.citedreferencePate, R., Hightower, M., Cameron, C., & Einfeld, W. ( 2007 ). Overview of energy‐water interdependencies and the emerging energy demands on water resources, Los Alamos, NM: Sandia National Laboratories. Report SAND 2007–1349C.en_US
dc.identifier.citedreferenceAden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L, Slayton, A., & Lukas, J. ( 2002 ). Lignocellulosic biomass to ethanol process design and economics utilizing co‐current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, Golden, CO: National Renewable Energy Laboratory.en_US
dc.identifier.citedreferenceWater Science and Technology Board ( 2008 ). Water implications of biofuels production in the United States, Washington, D.C.: The National Academies Press.en_US
dc.identifier.citedreferenceMarano, J., & CIferno, J. ( 2001 ). Life cycle greenhouse gas emissions inventory for Fischer‐Tropsch fuels, Pittsburg, PA: National Energy Technology Lab.en_US
dc.identifier.citedreferenceAden, A. ( 2007 ). Water usage for current and future ethanol production. Southwest Hydrology, 6, 22 – 23.en_US
dc.identifier.citedreferenceWright, M., & Brown, R. ( 2007 ). Comparative economics of biorefineries based on the biochemical and thermochemical platform, Biofuels. Bioproducts. and Biorefining, 1, 49 – 56.en_US
dc.identifier.citedreferenceMassie, C.T., & Shukla, A. ( 2004 ). Biomass cogeneration plant at Central MN ethanol coop. Sebesta Blomberg & Associates, Inc. AIChE Conference proceedings, Austin, TX. Available at: http://www.nt.ntnu.no/users/skoge/prost/proceedings/aiche‐2004/pdffiles/papers/035b.pdf. Accessed on March 4, 2009.en_US
dc.identifier.citedreferenceSwensen, D. ( 2008 ). The economic impact of ethanol production in Iowa. Staff General Research Papers, Department of Economics, Iowa State University. Available at: http://www.econ.iastate.edu/research/webpapers/paper_12865.pdf. Accessed on March 7, 2009.en_US
dc.identifier.citedreferencePeters, M., & Timmerhaus, K. ( 1990 ). Plant design and economics for chemical engineers ( 4th Edition ), New York, NY: McGraw Hill.en_US
dc.identifier.citedreferenceCongress of the United States Congressional Budget Office. ( 2009 ). The impact of ethanol use on food prices and greenhouse gas emissions. Available at: http://www.cbo.gov/ftpdocs/100xx/doc10057/04‐08‐Ethanol.pdf. Accessed on March 7, 2009.en_US
dc.identifier.citedreferenceHill, J., Polasky, S., Nelson, E., Tilman, D., Huo, H., Ludwig, L., Neumann, J., Zheng, H., & Bonta, D. ( 2009 ). Climate change and health costs of air emissions from biofuels and gasoline. Proceedings of National Academy of Sciences of the United States of America, 106, 2077 – 2082.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.