Show simple item record

Polymorphism of Xeroderma Pigmentosum group G and the risk of lung cancer and squamous cell carcinomas of the oropharynx, larynx and esophagus

dc.contributor.authorCui, Yanen_US
dc.contributor.authorMorgenstern, Halen_US
dc.contributor.authorGreenland, Sanderen_US
dc.contributor.authorTashkin, Donald P.en_US
dc.contributor.authorMao, Jenny T.en_US
dc.contributor.authorCao, Weien_US
dc.contributor.authorCozen, Wendyen_US
dc.contributor.authorMack, Thomas M.en_US
dc.contributor.authorZhang, Zuo‐fengen_US
dc.date.accessioned2011-12-05T18:31:43Z
dc.date.available2011-12-05T18:31:43Z
dc.date.issued2006-02-01en_US
dc.identifier.citationCui, Yan; Morgenstern, Hal; Greenland, Sander; Tashkin, Donald P.; Mao, Jenny; Cao, Wei; Cozen, Wendy; Mack, Thomas M.; Zhang, Zuo‐feng (2006). "Polymorphism of Xeroderma Pigmentosum group G and the risk of lung cancer and squamous cell carcinomas of the oropharynx, larynx and esophagus." International Journal of Cancer 118(3): 714-720. <http://hdl.handle.net/2027.42/88003>en_US
dc.identifier.issn0020-7136en_US
dc.identifier.issn1097-0215en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88003
dc.description.abstractWe investigated the effects of XPG His1104Asp polymorphism (rs17655) on the risk of lung cancer and squamous cell carcinomas of the oropharynx, larynx and esophagus (SCCOLE). This population‐based case‐control study involves 611 new cases of lung cancer, 601 new cases of oropharyngeal, laryngeal and esophageal cancers, and 1,040 cancer‐free controls. The XPG polymorphism was assayed by PCR‐RFLP method for 497 lung cancer cases, 443 cases of oropharyngeal, laryngeal and esophageal cancers and 912 controls. Binary and polytomous unconditional logistic regression models were fitted to assess the main effects and the effect modifications between the polymorphism and environmental exposures. With the adjustment for potential confounders, the XPG Asp1104Asp genotype was inversely associated with lung cancer (odds ratio [OR] = 0.62, 95% confidence limits [CL] = 0.38, 1.0) and SCCOLE (OR = 0.47, 95% CL = 0.27, 0.82), with the combined His1104His and His1104Asp genotypes as the referent. With subjects having genotype Asp1104Asp and no tobacco smoking exposure as the common referent, the ORs on lung cancer were 13 (95% CL = 4.4, 37) for heavy tobacco smoking (>20 pack‐years), 1.9 (95% CL = 0.78, 4.5) for having at least one copy of 1104His, and 23 (95% CL = 9.5, 56) for the joint effect, respectively. Compared to non‐smokers with the Asp1104Asp genotype, the adjusted OR on SCCOLE for heavy smokers (>20 pack‐years) having at least one copy of 1104His was 8.0 (95% CL = 2.7, 24). Similarly, compared to non‐drinkers with the Asp1104Asp genotype, the adjusted OR on SCCOLE for heavy drinkers (≥3 drinks/day) with at least one copy of 1104His was 10 (95% CL = 2.7, 38). In conclusion, our study suggests that the XPG Asp1104Asp genotype may be associated with decreased susceptibility to lung cancer and SCCOLE. © 2005 Wiley‐Liss, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherXPGen_US
dc.subject.otherPolymorphismen_US
dc.subject.otherLung Canceren_US
dc.subject.otherSCCOLEen_US
dc.titlePolymorphism of Xeroderma Pigmentosum group G and the risk of lung cancer and squamous cell carcinomas of the oropharynx, larynx and esophagusen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Epidemiology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Epidemiology, University of California at Los Angeles, Los Angeles, CA, USAen_US
dc.contributor.affiliationotherDepartment of Statistics, University of California at Los Angeles, Los Angeles, CA, USAen_US
dc.contributor.affiliationotherDivision of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USAen_US
dc.contributor.affiliationotherDepartment of Preventive Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, USAen_US
dc.contributor.affiliationotherDepartment of Epidemiology, University of California, Los Angeles, 71‐225 CHS, Box 951772, 650 Charles E. Young Drive, South, Los Angeles, CA, 90095‐1772en_US
dc.identifier.pmid16094634en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88003/1/21413_ftp.pdf
dc.identifier.doi10.1002/ijc.21413en_US
dc.identifier.sourceInternational Journal of Canceren_US
dc.identifier.citedreferenceWood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science 2001; 291: 1284 – 9.en_US
dc.identifier.citedreferencevan Hoffen A, Balajee AS, van Zeeland AA, Mullenders LH. Nucleotide excision repair and its interplay with transcription. Toxicology 2003; 193: 79 – 90.en_US
dc.identifier.citedreferenceBerwick M, Vineis P. Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst 2000; 92: 874 – 97.en_US
dc.identifier.citedreferenceMohrenweiser HW, Jones IM. Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat Res 1998; 400: 15 – 24.en_US
dc.identifier.citedreferenceO'Donovan A, Davies AA, Moggs JG, West SC, Wood RD. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 1994; 371: 432 – 5.en_US
dc.identifier.citedreferenceWakasugi M, Reardon JT, Sancar A. The non‐catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 1997; 272: 16030 – 4.en_US
dc.identifier.citedreferenceConstantinou A, Gunz D, Evans E, Lalle P, Bates PA, Wood RD, Clarkson SG. Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem 1999; 274: 5637 – 48.en_US
dc.identifier.citedreferenceCancer Genome Anatomy Project SNP500Cancer Database. National Cancer Institute 2004 ( http://snp500cancer.nci.nih.gov/snp.cfm? both_snp_id=ERCC5‐02 ).en_US
dc.identifier.citedreferenceWakasugi M, Sancar A. Order of assembly of human DNA repair excision nuclease. J Biol Chem 1999; 274: 18759 – 68.en_US
dc.identifier.citedreferenceCao W, Hashibe M, Rao JY, Morgenstern H, Zhang ZF. Comparison of methods for DNA extraction from paraffin‐embedded tissues and buccal cells. Cancer Detect Prev 2003; 27: 397 – 404.en_US
dc.identifier.citedreferenceJeon HS, Kim KM, Park SH, Lee SY, Choi JE, Lee GY, Kam S, Park RW, Kim IS, Kim CH, Jung TH, Park JY. Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis 2003; 24: 1677 – 81.en_US
dc.identifier.citedreferenceGreenland S. Introduction to Regression Models. In: Rothman KJ, Greenland S, eds. Modern epidemiology. Philadelphia: Lippincott Williams & Wilkins, 1998. p 395 – 6.en_US
dc.identifier.citedreferenceClarkson SG. The XPG story. Biochimie 2003; 85: 1113 – 21.en_US
dc.identifier.citedreferenceCheng L, Spitz MR, Hong WK, Wei Q. Reduced expression levels of nucleotide excision repair genes in lung cancer: a case‐control analysis. Carcinogenesis 2000; 21: 1527 – 30.en_US
dc.identifier.citedreferenceCheng L, Sturgis EM, Eicher SA, Spitz MR, Wei Q. Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck. Cancer 2002; 94: 393 – 7.en_US
dc.identifier.citedreferenceNIEHS SNPS SIFT/PolyPhen Data. 2004 ( http://egp.gs.washington.edu/pph‐sift‐stuff/pphSiftForEgpNonsynSnps.out ).en_US
dc.identifier.citedreferenceDeutsch‐Wenzel RP, Brune H, Grimmer G, Dettbarn G, Misfeld J. Experimental studies in rat lungs on the carcinogenicity and dose‐response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons. J Natl Cancer Inst 1983; 71: 539 – 44.en_US
dc.identifier.citedreferenceHoffmann D, Djordjevic MV, Rivenson A, Zang E, Desai D, Amin S. A study of tobacco carcinogenesis. LI. Relative potencies of tobacco‐specific N‐nitrosamines as inducers of lung tumours in A/J mice. Cancer Lett 1993; 71: 25 – 30.en_US
dc.identifier.citedreferenceLe Marchand L, Sivaraman L, Pierce L, Seifried A, Lum A, Wilkens LR, Lau AF. Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res 1998; 58: 4858 – 63.en_US
dc.identifier.citedreferencePoschl G, Seitz HK. Alcohol and cancer. Alcohol Alcohol 2004; 39: 155 – 65.en_US
dc.identifier.citedreferenceBrooks PJ. DNA damage, DNA repair, and alcohol toxicity—a review. Alcohol Clin Exp Res 1997; 21: 1073 – 82.en_US
dc.identifier.citedreferenceMarnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002; 181–2: 219 – 22.en_US
dc.identifier.citedreferenceMoller P, Wallin H. Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutat Res 1998; 410: 271 – 90.en_US
dc.identifier.citedreferenceKlungland A, Hoss M, Gunz D, Constantinou A, Clarkson SG, Doetsch PW, Bolton PH, Wood RD, Lindahl T. Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 1999; 3: 33 – 42.en_US
dc.identifier.citedreferenceBessho T. Nucleotide excision repair 3′ endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase. Nucleic Acids Res 1999; 27: 979 – 83.en_US
dc.identifier.citedreferenceWu AH, Fontham ET, Reynolds P, Greenberg RS, Buffler P, Liff J, Boyd P, Correa P. Family history of cancer and risk of lung cancer among lifetime nonsmoking women in the United States. Am J Epidemiol 1996; 143: 535 – 42.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.