Show simple item record

Adaptive Lagrangian–Eulerian computation of propagation and rupture of a liquid plug in a tube

dc.contributor.authorHassan, Ez A.en_US
dc.contributor.authorUzgoren, Erayen_US
dc.contributor.authorFujioka, Hidekien_US
dc.contributor.authorGrotberg, James B.en_US
dc.contributor.authorShyy, Weien_US
dc.date.accessioned2011-12-05T18:32:20Z
dc.date.available2013-02-01T20:26:17Zen_US
dc.date.issued2011-12-20en_US
dc.identifier.citationHassan, Ez A.; Uzgoren, Eray; Fujioka, Hideki; Grotberg, James B.; Shyy, Wei (2011). "Adaptive Lagrangian–Eulerian computation of propagation and rupture of a liquid plug in a tube." International Journal for Numerical Methods in Fluids 67(11): 1373-1392. <http://hdl.handle.net/2027.42/88023>en_US
dc.identifier.issn0271-2091en_US
dc.identifier.issn1097-0363en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88023
dc.description.abstractLiquid plug propagation and rupture occurring in lung airways can have a detrimental effect on epithelial cells. In this study, a numerical simulation of a liquid plug in an infinite tube is conducted using an Eulerian–Lagrangian approach and the continuous interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information about the interface mesh. Results prior to the rupture are in reasonable agreement with the study of Fujioka et al . in which a Lagrangian method is used. For unity non‐dimensional pressure drop and a Laplace number of 1000, rupture time is shown to be delayed as the initial precursor film thickness increases and rupture is not expected for thicknesses larger than 0.10 of tube radius. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage. The peak values of those stresses increase as the initial precursor film thickness is reduced. After rupture, the peaks in mechanical stresses decrease in magnitude as the plug vanishes and the flow approaches a fully developed behavior. Increasing initial pressure drop is shown to linearly increase maximum variations in wall pressure and shear stress. Decreasing the pressure drop and increasing the Laplace number appear to delay rupture because it takes longer for a fluid with large inertial forces to respond to the small pressure drop. Copyright © 2010 John Wiley & Sons, Ltd.en_US
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.subject.otherALEen_US
dc.subject.otherImmersed Boundary Methoden_US
dc.subject.otherMulti‐Phase Flowsen_US
dc.subject.otherIncompressible Flowen_US
dc.subject.otherMesh Adaptationen_US
dc.subject.otherLaminar Flowen_US
dc.titleAdaptive Lagrangian–Eulerian computation of propagation and rupture of a liquid plug in a tubeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAerospace Engineering, University of Michigan, Ann Arbor, MI, U.S.A.en_US
dc.contributor.affiliationumBiomedical Engineering, University of Michigan, Ann Arbor, MI, U.S.A.en_US
dc.contributor.affiliationumAerospace Engineering, University of Michigan, Ann Arbor, MI, U.S.A.en_US
dc.contributor.affiliationotherMiddle East Technical University, Northern Cyprus Campus, Mersin, Turkeyen_US
dc.contributor.affiliationotherTulane University New Orleans, LA, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kongen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88023/1/2422_ftp.pdf
dc.identifier.doi10.1002/fld.2422en_US
dc.identifier.sourceInternational Journal for Numerical Methods in Fluidsen_US
dc.identifier.citedreferenceHuh D. et al. Acoustically detectable cellular‐level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proceedings of the National Academy of Sciences 2007; 104: 18886.en_US
dc.identifier.citedreferenceUzgoren E. et al. Computational modeling for multiphase flows with spacecraft application. Progress in Aerospace Sciences 2007; 43: 138 – 192.en_US
dc.identifier.citedreferenceShyy W. et al. Computational Fluid Dynamics with Moving Boundaries. Dover, Taylor & Francis: New York, Washington, DC (1996, revised printing 1997, 1998 & 2001), 2007.en_US
dc.identifier.citedreferenceTryggvason G, Prosperetti A. Computational Methods for Multiphase Flow. Cambridge University Press: Cambridge, 2007.en_US
dc.identifier.citedreferenceOsher S, Fedkiw RP. Level Set Methods and Dynamic Implicit Surfaces. Springer: Berlin, 2002.en_US
dc.identifier.citedreferenceTryggvason G. et al. A front‐tracking method for the computations of multiphase flow. Journal of Computational Physics 2001; 169: 708 – 759.en_US
dc.identifier.citedreferenceScardovelli R, Zaleski S. Direct numerical simulation of free‐surface and interfacial flow. Annual Review of Fluid Mechanics 1999; 31: 567 – 603.en_US
dc.identifier.citedreferenceFujioka H, Takayama S, Grotberg JB. Unsteady propagation of a liquid plug in liquid lined tube. Physics of Fluids 2008; 20:062104.en_US
dc.identifier.citedreferenceWasekar VM, Manglik RM. Short‐time‐transient surfactant dynamics and Marangoni convection around boiling nuclei. Journal of Heat Transfer 2003; 125: 858 – 866.en_US
dc.identifier.citedreferencePerot B, Nallapati R. A moving unstructured staggered mesh method for the simulation of incompressible free‐surface flows. Journal of Computational Physics 2003; 184: 192 – 214.en_US
dc.identifier.citedreferenceSussman M. et al. A sharp interface method for incompressible two‐phase flows. Journal of Computational Physics 2007; 221: 469 – 505.en_US
dc.identifier.citedreferenceLosasso F, Fedkiw R, Osher S. Spatially adaptive techniques for level set methods and incompressible flow. Computers and Fluids 2006; 35: 995 – 1010.en_US
dc.identifier.citedreferenceFrancois M, Shyy W. Micro‐scale drop dynamics for heat transfer enhancement. Progress in Aerospace Sciences 2002; 38: 275 – 304.en_US
dc.identifier.citedreferenceUzgoren E, Sim J, Shyy W. Marker‐based, 3‐D adaptive cartesian grid method for multiphase flow around irregular geometries. Communications in Computational Physics 2009; 5: 1 – 41.en_US
dc.identifier.citedreferenceSingh R, Shyy W. Three‐dimensional adaptive Cartesian grid method with conservative interface restructuring and reconstruction. Journal of Computational Physics 2007; 224: 150 – 167.en_US
dc.identifier.citedreferenceShyy W. Multiphase computations using sharp and continuous interface techniques for micro‐gravity applications. Comptes Rendus Mecanique 2004; 332: 375 – 386.en_US
dc.identifier.citedreferencePeskin CS. The immersed boundary method. Acta Numerica 2003; 11: 479 – 517.en_US
dc.identifier.citedreferenceFrancois M, Shyy W. Computations of drop dynamics with the immersed boundary method, part 1: numerical algoritm and buoyancy‐induced effect. Numerical Heat Transfer. Part B: Fundamentals 2003; 44: 101 – 118.en_US
dc.identifier.citedreferenceYe T. et al. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics 1999; 156: 209 – 240.en_US
dc.identifier.citedreferenceLeveque RJ, Li Z. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis 1994; 31: 1019 – 1044.en_US
dc.identifier.citedreferenceLi Z, Lai MC. The immersed interface method for the Navier–Stokes equations with singular forces. Journal of Computational Physics 2001; 171: 822 – 842.en_US
dc.identifier.citedreferenceYe T, Shyy W, Chung JC. A fixed‐grid, sharp‐interface method for bubble dynamics and phase change. Journal of Computational Physics 2001; 174: 781 – 815.en_US
dc.identifier.citedreferenceUzgoren E, Sim J, Shyy W. Computations of multiphase fluid flows using marker‐based adaptive, multilevel Cartesian grid Method. The 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007.en_US
dc.identifier.citedreferenceBilek AM, Dee KC, Gaver DP. Mechanisms of surface‐tension‐induced epithelial cell damage in a model of pulmonary airway opening. Journal of Applied Physiology 2003; 94: 770 – 783.en_US
dc.identifier.citedreferenceKay SS. et al. Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening. Journal of Applied Physiology 2004; 97: 269 – 276.en_US
dc.identifier.citedreferenceZheng Y. et al. Liquid plug propagation in flexible microchannels: a small airway model. Physics of Fluids 2009; 21:071903.en_US
dc.identifier.citedreferenceHowell PD, Waters SL, Grotberg JB. The propagation of a liquid bolus along a liquid‐lined flexible tube. Journal of Fluid Mechanics 2000; 406: 309 – 335.en_US
dc.identifier.citedreferenceWaters SL, Grotberg JB. The propagation of a liquid bolus along a liquid‐lined flexible tube. Physics of Fluids 2002; 14: 471 – 480.en_US
dc.identifier.citedreferenceFujioka H, Grotberg JB. Steady propagation of a liquid plug in a two‐dimensional channel. Journal of Biomechanical Engineering 2004; 126: 567.en_US
dc.identifier.citedreferenceFujioka H, Grotberg J. The steady propagation of a surfactant‐laden liquid plug in a two‐dimensional channel. Physics of Fluids 2005; 17:082102.en_US
dc.identifier.citedreferenceSuresh VA, Grotberg JB. The effect of gravity on liquid plug propagation in a two‐dimensional channel. Physics of Fluids 2005; 17:031507.en_US
dc.identifier.citedreferenceZheng Y. et al. Effects of inertia and gravity on liquid plug splitting at a bifurcation. Journal of Biomechanical Engineering 2006; 128: 707.en_US
dc.identifier.citedreferenceCampana DM. et al. Accurate representation of surface tension using level‐contour reconstruction method. Journal of Computational Physics 2007; 203: 493 – 516.en_US
dc.identifier.citedreferenceErneux T, Davis SH. Nonlinear rupture of free films. Physics of Fluids A: Fluid Dynamics 1993; 5: 1117.en_US
dc.identifier.citedreferenceUzgoren E. et al. A unified adaptive cartesian grid method for solid‐multiphase fluid dynamics with moving boundaries. The 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, 2007.en_US
dc.identifier.citedreferenceFujioka H, Takayama S, Grotberg JB. Unsteady propagation of a liquid plug in liquid lined tube. Physics of Fluids 2008; 20. DOI: 10.1063/1061.2938381.en_US
dc.identifier.citedreferenceRaymond M. In defense of the stethoscope. Respiratory Care 2008; 53: 355 – 369.en_US
dc.identifier.citedreferencePasterkamp H, Kraman SS, Wodicka GR. Respiratory sounds. advances beyond the stethoscope. American Journal of Respiratory and Critical Care Medicine 1997; 156: 974 – 987.en_US
dc.identifier.citedreferenceMunakata M. et al. Production mechanism of crackles in excised normal canine lungs. Journal of Applied Physiology 1986; 0161: 1120 – 1125.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.