Show simple item record

Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study

dc.contributor.authorSánchez, Elenaen_US
dc.contributor.authorComeau, Mary E.en_US
dc.contributor.authorFreedman, Barry I.en_US
dc.contributor.authorKelly, Jennifer A.en_US
dc.contributor.authorKaufman, Kenneth M.en_US
dc.contributor.authorLangefeld, Carl D.en_US
dc.contributor.authorBrown, Elizabeth E.en_US
dc.contributor.authorAlarcón, Graciela S.en_US
dc.contributor.authorKimberly, Robert P.en_US
dc.contributor.authorEdberg, Jeffrey C.en_US
dc.contributor.authorRamsey‐goldman, Rosalinden_US
dc.contributor.authorPetri, Michelle A.en_US
dc.contributor.authorReveille, John D.en_US
dc.contributor.authorVilá, Luis M.en_US
dc.contributor.authorMerrill, Joan T.en_US
dc.contributor.authorTsao, Betty P.en_US
dc.contributor.authorKamen, Diane L.en_US
dc.contributor.authorGilkeson, Gary S.en_US
dc.contributor.authorJames, Judith A.en_US
dc.contributor.authorVyse, Timothy J.en_US
dc.contributor.authorGaffney, Patrick M.en_US
dc.contributor.authorJacob, Chaim O.en_US
dc.contributor.authorNiewold, Timothy B.en_US
dc.contributor.authorRichardson, Bruce C.en_US
dc.contributor.authorHarley, John B.en_US
dc.contributor.authorAlarcón‐riquelme, Marta E.en_US
dc.contributor.authorSawalha, Amr H.en_US
dc.date.accessioned2011-12-05T18:32:33Z
dc.date.available2013-01-02T16:32:44Zen_US
dc.date.issued2011-11en_US
dc.identifier.citationSánchez, Elena ; Comeau, Mary E.; Freedman, Barry I.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Langefeld, Carl D.; Brown, Elizabeth E.; Alarcón, Graciela S. ; Kimberly, Robert P.; Edberg, Jeffrey C.; Ramsey‐goldman, Rosalind ; Petri, Michelle; Reveille, John D.; Vilá, Luis M. ; Merrill, Joan T.; Tsao, Betty P.; Kamen, Diane L.; Gilkeson, Gary S.; James, Judith A.; Vyse, Timothy J.; Gaffney, Patrick M.; Jacob, Chaim O.; Niewold, Timothy B.; Richardson, Bruce C.; Harley, John B.; Alarcón‐riquelme, Marta E. ; Sawalha, Amr H. (2011). "Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study." Arthritis & Rheumatism 63(11): 3493-3501. <http://hdl.handle.net/2027.42/88030>en_US
dc.identifier.issn0004-3591en_US
dc.identifier.issn1529-0131en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88030
dc.description.abstractObjective Candidate gene and genome‐wide association studies have identified several disease susceptibility loci in lupus patients. These studies have largely been performed in lupus patients who are Asian or of European ancestry. This study was undertaken to examine whether some of these same susceptibility loci increase lupus risk in African American individuals. Methods Single‐nucleotide polymorphisms tagging 15 independent lupus susceptibility loci were genotyped in a set of 1,724 lupus patients and 2,024 healthy controls of African American descent. The loci examined included PTPN22 , FCGR2A , TNFSF4 , STAT4 , CTLA4 , PDCD1 , PXK , BANK1 , MSH5 (HLA region), CFB (HLA region), C8orf13‐BLK region, MBL2 , KIAA1542 , ITGAM , and MECP2 / IRAK1 . Results We found the first evidence of genetic association between lupus in African American patients and 5 susceptibility loci ( C8orf13‐BLK , BANK1 , TNFSF4 , KIAA1542 , and CTLA4 ; P = 8.0 × 10 −6 , P = 1.9 × 10 −5 , P = 5.7 × 10 −5 , P = 0.00099, and P = 0.0045, respectively). Further, we confirmed the genetic association between lupus and 5 additional lupus susceptibility loci ( ITGAM , MSH5 , CFB , STAT4 , and FCGR2A ; P = 7.5 × 10 −11 , P = 5.2 × 10 −8 , P = 8.7 × 10 −7 , P = 0.0058, and P = 0.0070, respectively), and provided evidence, for the first time, of genome‐wide significance for the association between lupus in African American patients and ITGAM and MSH5 (HLA region). Conclusion These findings provide evidence of novel genetic susceptibility loci for lupus in African Americans and demonstrate that the majority of lupus susceptibility loci examined confer lupus risk across multiple ethnicities.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleIdentification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association studyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeriatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan and Ann Arbor VA Medical Center, Ann Arboren_US
dc.contributor.affiliationotherOklahoma Medical Research Foundation, Oklahoma Cityen_US
dc.contributor.affiliationotherWake Forest University Health Sciences, Winston‐Salem, North Carolinaen_US
dc.contributor.affiliationotherWake Forest University School of Medicine, Winston‐Salem, North Carolinaen_US
dc.contributor.affiliationotherOklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, and Oklahoma City VA Medical Center, Oklahoma Cityen_US
dc.contributor.affiliationotherUniversity of Alabama at Birminghamen_US
dc.contributor.affiliationotherNorthwestern University Feinberg School of Medicine, Chicago, Illinoisen_US
dc.contributor.affiliationotherJohns Hopkins University School of Medicine, Baltimore, Marylanden_US
dc.contributor.affiliationotherUniversity of Texas Health Science Center at Houstonen_US
dc.contributor.affiliationotherUniversity of Puerto Rico School of Medicine, San Juan, Puerto Ricoen_US
dc.contributor.affiliationotherOklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma Cityen_US
dc.contributor.affiliationotherUniversity of California, Los Angelesen_US
dc.contributor.affiliationotherMedical University of South Carolina, Charlestonen_US
dc.contributor.affiliationotherKing's College London and Guy's Hospital, London, UKen_US
dc.contributor.affiliationotherUniversity of Southern California, Los Angelesen_US
dc.contributor.affiliationotherUniversity of Chicago, Chicago, Illinoisen_US
dc.contributor.affiliationotherCincinnati Children's Hospital Medical Center and Cincinnati VA Medical Center, Cincinnati, Ohioen_US
dc.contributor.affiliationotherOklahoma Medical Research Foundation, Oklahoma City, and Pfizer–University of Granada–Junta de Andalucia, Granada, Spainen_US
dc.contributor.affiliationotherOklahoma Medical Research Foundation, 825 NE 13th Street, MS#24, Oklahoma City, OK 73104en_US
dc.identifier.pmid21792837en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88030/1/30563_ftp.pdf
dc.identifier.doi10.1002/art.30563en_US
dc.identifier.sourceArthritis & Rheumatismen_US
dc.identifier.citedreferenceHarley JB, Kelly JA, Kaufman KM. Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol 2006; 28: 119 – 30.en_US
dc.identifier.citedreferenceWeckerle CE, Niewold TB. The unexplained female predominance of systemic lupus erythematosus: clues from genetic and cytokine studies. Clin Rev Allergy Immunol 2011; 40: 42 – 9.en_US
dc.identifier.citedreferenceLau CS, Yin G, Mok MY. Ethnic and geographical differences in systemic lupus erythematosus: an overview. Lupus 2006; 15: 715 – 9.en_US
dc.identifier.citedreferenceFessel WJ. Systemic lupus erythematosus in the community: incidence, prevalence, outcome, and first symptoms; the high prevalence in black women. Arch Intern Med 1974; 134: 1027 – 35.en_US
dc.identifier.citedreferenceDooley MA, Hogan S, Jennette C, Falk R, for the Glomerular Disease Collaborative Network. Cyclophosphamide therapy for lupus nephritis: poor renal survival in black Americans. Kidney Int 1997; 51: 1188 – 95.en_US
dc.identifier.citedreferenceDelgado‐Vega A, Sanchez E, Lofgren S, Castillejo‐Lopez C, Alarcon‐Riquelme ME. Recent findings on genetics of systemic autoimmune diseases. Curr Opin Immunol 2010; 22: 698 – 705.en_US
dc.identifier.citedreferenceFlesher DL, Sun X, Behrens TW, Graham RR, Criswell LA. Recent advances in the genetics of systemic lupus erythematosus. Expert Rev Clin Immunol 2010; 6: 461 – 79.en_US
dc.identifier.citedreferenceHom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. Association of systemic lupus erythematosus with C8orf13‐BLK and ITGAM‐ITGAX. N Engl J Med 2008; 358: 900 – 9.en_US
dc.identifier.citedreferenceKozyrev SV, Abelson AK, Wojcik J, Zaghlool A, Linga Reddy MV, Sanchez E, et al. Functional variants in the B‐cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 2008; 40: 211 – 6.en_US
dc.identifier.citedreferenceCriswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M, et al. Analysis of families in the Multiple Autoimmune Disease Genetics Consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561 – 71.en_US
dc.identifier.citedreferenceHarley JB, Alarcon‐Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, et al. Genome‐wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008; 40: 204 – 10.en_US
dc.identifier.citedreferenceSigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, Sturfelt G, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 2005; 76: 528 – 37.en_US
dc.identifier.citedreferenceRemmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007; 357: 977 – 86.en_US
dc.identifier.citedreferenceSawalha AH, Webb R, Han S, Kelly JA, Kaufman KM, Kimberly RP, et al. Common variants within MECP2 confer risk of systemic lupus erythematosus. PLoS One 2008; 3: e1727.en_US
dc.identifier.citedreferenceGraham RR, Kozyrev SV, Baechler EC, Reddy MV, Plenge RM, Bauer JW, et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550 – 5.en_US
dc.identifier.citedreferenceAbelson AK, Delgado‐Vega AM, Kozyrev SV, Sanchez E, Velazquez‐Cruz R, Eriksson N, et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis 2009; 68: 1746 – 53.en_US
dc.identifier.citedreferenceNath SK, Han S, Kim‐Howard X, Kelly JA, Viswanathan P, Gilkeson GS, et al. A nonsynonymous functional variant in integrin‐αM (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 2008; 40: 152 – 4.en_US
dc.identifier.citedreferenceCunninghame Graham DS, Graham RR, Manku H, Wong AK, Whittaker JC, Gaffney PM, et al. Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet 2008; 40: 83 – 9.en_US
dc.identifier.citedreferenceTorres B, Aguilar F, Franco E, Sanchez E, Sanchez‐Roman J, Jimenez Alonso J, et al. Association of the CT60 marker of the CTLA4 gene with systemic lupus erythematosus. Arthritis Rheum 2004; 50: 2211 – 5.en_US
dc.identifier.citedreferenceGarred P, Madsen HO, Halberg P, Petersen J, Kronborg G, Svejgaard A, et al. Mannose‐binding lectin polymorphisms and susceptibility to infection in systemic lupus erythematosus. Arthritis Rheum 1999; 42: 2145 – 52.en_US
dc.identifier.citedreferenceSalmon JE, Millard S, Schachter LA, Arnett FC, Ginzler EM, Gourley MF, et al. FcγRIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 1996; 97: 1348 – 54.en_US
dc.identifier.citedreferenceProkunina L, Castillejo‐Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666 – 9.en_US
dc.identifier.citedreferenceKamen DL, Barron M, Parker TM, Shaftman SR, Bruner GR, Aberle T, et al. Autoantibody prevalence and lupus characteristics in a unique African American population. Arthritis Rheum 2008; 58: 1237 – 47.en_US
dc.identifier.citedreferenceHochberg MC, for the Diagnostic and Therapeutic Criteria Committee of the American College of Rheumatology. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis Rheum 1997; 40: 1725.en_US
dc.identifier.citedreferenceSawalha AH, Kaufman KM, Kelly JA, Adler AJ, Aberle T, Kilpatrick J, et al. Genetic association of interleukin‐21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis 2008; 67: 458 – 61.en_US
dc.identifier.citedreferenceKelly JA, Kelley JM, Kaufman KM, Kilpatrick J, Bruner GR, Merrill JT, et al. Interferon regulatory factor‐5 is genetically associated with systemic lupus erythematosus in African Americans. Genes Immun 2008; 9: 187 – 94.en_US
dc.identifier.citedreferenceHughes T, Kim‐Howard X, Kelly JA, Kaufman KM, Langefeld CD, Ziegler J, et al. Fine‐mapping and transethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21. Arthritis Rheum 2011; 63: 1689 – 97.en_US
dc.identifier.citedreferenceHalder I, Shriver M, Thomas M, Fernandez JR, Frudakis T. A panel of ancestry informative markers for estimating individual biogeographical ancestry and admixture from four continents: utility and applications. Hum Mutat 2008; 29: 648 – 58.en_US
dc.identifier.citedreferenceSmith MW, Patterson N, Lautenberger JA, Truelove AL, McDonald GJ, Waliszewska A, et al. A high‐density admixture map for disease gene discovery in African Americans. Am J Hum Genet 2004; 74: 1001 – 13.en_US
dc.identifier.citedreferenceYang N, Li H, Criswell LA, Gregersen PK, Alarcon‐Riquelme ME, Kittles R, et al. Examination of ancestry and ethnic affiliation using highly informative diallelic DNA markers: application to diverse and admixed populations and implications for clinical epidemiology and forensic medicine. Hum Genet 2005; 118: 382 – 92.en_US
dc.identifier.citedreferenceKosoy R, Nassir R, Tian C, White PA, Butler LM, Silva G, et al. Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 2009; 30: 69 – 78.en_US
dc.identifier.citedreferenceSanchez E, Webb RD, Rasmussen A, Kelly JA, Riba L, Kaufman KM, et al. Genetically determined Amerindian ancestry correlates with increased frequency of risk alleles for systemic lupus erythematosus. Arthritis Rheum 2010; 62: 3722 – 9.en_US
dc.identifier.citedreferenceMcKeigue PM, Carpenter JR, Parra EJ, Shriver MD. Estimation of admixture and detection of linkage in admixed populations by a Bayesian approach: application to African‐American populations. Ann Hum Genet 2000; 64: 171 – 86.en_US
dc.identifier.citedreferenceHoggart CJ, Parra EJ, Shriver MD, Bonilla C, Kittles RA, Clayton DG, et al. Control of confounding of genetic associations in stratified populations. Am J Hum Genet 2003; 72: 1492 – 504.en_US
dc.identifier.citedreferenceHoggart CJ, Shriver MD, Kittles RA, Clayton DG, McKeigue PM. Design and analysis of admixture mapping studies. Am J Hum Genet 2004; 74: 965 – 78.en_US
dc.identifier.citedreferencePurcell S, Neale B, Todd‐Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole‐genome association and population‐based linkage analyses. Am J Hum Genet 2007; 81: 559 – 75.en_US
dc.identifier.citedreferenceGuedj M, Wojcik J, Della‐Chiesa E, Nuel G, Forner K. A fast, unbiased and exact allelic test for case‐control association studies. Hum Hered 2006; 61: 210 – 21.en_US
dc.identifier.citedreferenceBreslow NE, Day NE, Halvorsen KT, Prentice RL, Sabai C. Estimation of multiple relative risk functions in matched case‐control studies. Am J Epidemiol 1978; 108: 299 – 307.en_US
dc.identifier.citedreferenceYang W, Ng P, Zhao M, Hirankarn N, Lau CS, Mok CC, et al. Population differences in SLE susceptibility genes: STAT4 and BLK, but not PXK, are associated with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 2009; 10: 219 – 26.en_US
dc.identifier.citedreferenceReveille JD, Schrohenloher RE, Acton RT, Barger BO. DNA analysis of HLA–DR and DQ genes in American blacks with systemic lupus erythematosus. Arthritis Rheum 1989; 32: 1243 – 51.en_US
dc.identifier.citedreferenceSullivan KE, Wooten C, Schmeckpeper BJ, Goldman D, Petri MA. A promoter polymorphism of tumor necrosis factor α associated with systemic lupus erythematosus in African‐Americans. Arthritis Rheum 1997; 40: 2207 – 11.en_US
dc.identifier.citedreferenceLee YH, Nath SK. Systemic lupus erythematosus susceptibility loci defined by genome scan meta‐analysis. Hum Genet 2005; 118: 434 – 43.en_US
dc.identifier.citedreferenceYokoyama K, Su IH, Tezuka T, Yasuda T, Mikoshiba K, Tarakhovsky A, et al. BANK regulates BCR‐induced calcium mobilization by promoting tyrosine phosphorylation of IP 3 receptor. EMBO J 2002; 21: 83 – 92.en_US
dc.identifier.citedreferenceSaijo K, Schmedt C, Su IH, Karasuyama H, Lowell CA, Reth M, et al. Essential role of Src‐family protein tyrosine kinases in NF‐κB activation during B cell development. Nat Immunol 2003; 4: 274 – 9.en_US
dc.identifier.citedreferenceChang YK, Yang W, Zhao M, Mok CC, Chan TM, Wong RW, et al. Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 2009; 10: 414 – 20.en_US
dc.identifier.citedreferenceNamjou B, Sestak AL, Armstrong DL, Zidovetzki R, Kelly JA, Jacob N, et al. High‐density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis Rheum 2009; 60: 1085 – 95.en_US
dc.identifier.citedreferenceMoser KL, Neas BR, Salmon JE, Yu H, Gray‐McGuire C, Asundi N, et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African‐American pedigrees. Proc Natl Acad Sci U S A 1998; 95: 14869 – 74.en_US
dc.identifier.citedreferenceSalmon JE, Edberg JC, Brogle NL, Kimberly RP. Allelic polymorphisms of human Fcγ receptor IIA and Fcγ receptor IIIB: independent mechanisms for differences in human phagocyte function. J Clin Invest 1992; 89: 1274 – 81.en_US
dc.identifier.citedreferenceSalmon JE, Edberg JC, Kimberly RP. Fcγ receptor III on human neutrophils: allelic variants have functionally distinct capacities. J Clin Invest 1990; 85: 1287 – 95.en_US
dc.identifier.citedreferenceHan JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome‐wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1234 – 7.en_US
dc.identifier.citedreferenceYang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, et al, Asian Lupus Genetics Consortium (ALGC). Genome‐wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet 2010; 6: e1000841.en_US
dc.identifier.citedreferenceMathur AN, Chang HC, Zisoulis DG, Stritesky GL, Yu Q, O'Malley JT, et al. Stat3 and Stat4 direct development of IL‐17‐secreting Th cells. J Immunol 2007; 178: 4901 – 7.en_US
dc.identifier.citedreferenceParks CG, Hudson LL, Cooper GS, Dooley MA, Treadwell EL, St Clair EW, et al. CTLA‐4 gene polymorphisms and systemic lupus erythematosus in a population‐based study of whites and African‐Americans in the southeastern United States. Lupus 2004; 13: 784 – 91.en_US
dc.identifier.citedreferenceFu Q, Zhao J, Qian X, Wong JL, Kaufman KM, Yu CY, et al. Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum 2011; 63: 749 – 54.en_US
dc.identifier.citedreferenceSalloum R, Franek BS, Kariuki SN, Rhee L, Mikolaitis RA, Jolly M, et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon‐α activity in lupus patients. Arthritis Rheum 2010; 62: 553 – 61.en_US
dc.identifier.citedreferenceKim EM, Bang SY, Kim I, Shin HD, Park BL, Lee HS, et al. Different genetic effect of PXK on systemic lupus erythematosus in the Korean population. Rheumatol Int 2011. E‐pub ahead of print.en_US
dc.identifier.citedreferenceTsai YC, Yao TC, Kuo ML, Cheng TT, Huang JL. Lack of association of mannose‐binding lectin gene polymorphisms with development and clinical manifestations of systemic lupus erythematosus in Chinese children. Lupus 2009; 18: 372 – 6.en_US
dc.identifier.citedreferenceLi SG, Huang F, Liu XY, Deng XX, Xu M, Cong XZ, et al. The role of mannose binding lectin in the pathogenesis of systemic lupus erythematosus. Zhonghua Yi Xue Za Zhi 2006; 86: 463 – 7. In Chinese.en_US
dc.identifier.citedreferenceMonticielo OA, Chies JA, Mucenic T, Rucatti GG, Junior JM, da Silva GK, et al. Mannose‐binding lectin gene polymorphisms in Brazilian patients with systemic lupus erythematosus. Lupus 2010; 19: 280 – 7.en_US
dc.identifier.citedreferenceLea W, Lee Y. The association between the PTPN22 C1858T polymorphism and systemic lupus erythematosus: a meta‐analysis update. Lupus 2011; 20: 51 – 7.en_US
dc.identifier.citedreferenceLee YH, Woo JH, Choi SJ, Ji JD, Song GG. Association of programmed cell death 1 polymorphisms and systemic lupus erythematosus: a meta‐analysis. Lupus 2009; 18: 9 – 15.en_US
dc.identifier.citedreferenceMori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K. Ethnic differences in allele frequency of autoimmune‐disease‐associated SNPs. J Hum Genet 2005; 50: 264 – 6.en_US
dc.identifier.citedreferenceLee HS, Korman BD, Le JM, Kastner DL, Remmers EF, Gregersen PK, et al. Genetic risk factors for rheumatoid arthritis differ in Caucasian and Korean populations. Arthritis Rheum 2009; 60: 364 – 71.en_US
dc.identifier.citedreferenceBan Y, Tozaki T, Taniyama M, Tomita M. The codon 620 single nucleotide polymorphism of the protein tyrosine phosphatase‐22 gene does not contribute to autoimmune thyroid disease susceptibility in the Japanese. Thyroid 2005; 15: 1115 – 8.en_US
dc.identifier.citedreferenceSuarez‐Gestal M, Calaza M, Endreffy E, Pullmann R, Ordi‐Ros J, Sebastiani GD, et al. Replication of recently identified systemic lupus erythematosus genetic associations: a case‐control study. Arthritis Res Ther 2009; 11: R69.en_US
dc.identifier.citedreferenceJacob CO, Zhu J, Armstrong DL, Yan M, Han J, Zhou XJ, et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A 2009; 106: 6256 – 61.en_US
dc.identifier.citedreferenceGateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large‐scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1228 – 33.en_US
dc.identifier.citedreferencePullmann R Jr, Lukac J, Skerenova M, Rovensky J, Hybenova J, Melus V, et al. Cytotoxic T lymphocyte antigen 4 (CTLA‐4) dimorphism in patients with systemic lupus erythematosus. Clin Exp Rheumatol 1999; 17: 725 – 9.en_US
dc.identifier.citedreferenceLee YH, Witte T, Momot T, Schmidt RE, Kaufman KM, Harley JB, et al. The mannose‐binding lectin gene polymorphisms and systemic lupus erythematosus: two case–control studies and a meta‐analysis. Arthritis Rheum 2005; 52: 3966 – 74.en_US
dc.identifier.citedreferenceWebb R, Wren JD, Jeffries M, Kelly JA, Kaufman KM, Tang Y, et al. Variants within MECP2, a key transcription regulator, are associated with increased susceptibility to lupus and differential gene expression in patients with systemic lupus erythematosus. Arthritis Rheum 2009; 60: 1076 – 84.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.