Show simple item record

Evidence of association of APOE with age‐related macular degeneration ‐ a pooled analysis of 15 studies

dc.contributor.authorMcKay, Gareth J.en_US
dc.contributor.authorPatterson, Chris C.en_US
dc.contributor.authorChakravarthy, Ushaen_US
dc.contributor.authorDasari, Shilpaen_US
dc.contributor.authorKlaver, Caroline C.en_US
dc.contributor.authorVingerling, Johannes R.en_US
dc.contributor.authorHo, Lintjeen_US
dc.contributor.authorde Jong, Paulus T.V.M.en_US
dc.contributor.authorFletcher, Astrid E.en_US
dc.contributor.authorYoung, Ian S.en_US
dc.contributor.authorSeland, Johan H.en_US
dc.contributor.authorRahu, Matien_US
dc.contributor.authorSoubrane, Giseleen_US
dc.contributor.authorTomazzoli, Lauraen_US
dc.contributor.authorTopouzis, Fotisen_US
dc.contributor.authorVioque, Jesusen_US
dc.contributor.authorHingorani, Aroon D.en_US
dc.contributor.authorSofat, Reechaen_US
dc.contributor.authorDean, Michaelen_US
dc.contributor.authorSawitzke, Julieen_US
dc.contributor.authorSeddon, Johanna M.en_US
dc.contributor.authorPeter, Ingaen_US
dc.contributor.authorWebster, Andrew R.en_US
dc.contributor.authorMoore, Anthony T.en_US
dc.contributor.authorYates, John R.W.en_US
dc.contributor.authorCipriani, Valentinaen_US
dc.contributor.authorFritsche, Lars G.en_US
dc.contributor.authorWeber, Bernhard H.F.en_US
dc.contributor.authorKeilhauer, Claudia N.en_US
dc.contributor.authorLotery, Andrew J.en_US
dc.contributor.authorEnnis, Sarahen_US
dc.contributor.authorKlein, Michael L.en_US
dc.contributor.authorFrancis, Peter J.en_US
dc.contributor.authorStambolian, Dwighten_US
dc.contributor.authorOrlin, Antonen_US
dc.contributor.authorGorin, Michael B.en_US
dc.contributor.authorWeeks, Daniel E.en_US
dc.contributor.authorKuo, Chia‐lingen_US
dc.contributor.authorSwaroop, Ananden_US
dc.contributor.authorOthman, Mohammaden_US
dc.contributor.authorKanda, Atsuhiroen_US
dc.contributor.authorChen, Weien_US
dc.contributor.authorAbecasis, Gonçalo R.en_US
dc.contributor.authorWright, Alan F.en_US
dc.contributor.authorHayward, Carolineen_US
dc.contributor.authorBaird, Paul N.en_US
dc.contributor.authorGuymer, Robyn H.en_US
dc.contributor.authorAttia, Johnen_US
dc.contributor.authorThakkinstian, Ammarinen_US
dc.contributor.authorSilvestri, Giulianaen_US
dc.date.accessioned2011-12-05T18:33:04Z
dc.date.available2013-02-01T20:26:17Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationMcKay, Gareth J.; Patterson, Chris C.; Chakravarthy, Usha; Dasari, Shilpa; Klaver, Caroline C.; Vingerling, Johannes R.; Ho, Lintje; de Jong, Paulus T.V.M.; Fletcher, Astrid E.; Young, Ian S.; Seland, Johan H.; Rahu, Mati; Soubrane, Gisele; Tomazzoli, Laura; Topouzis, Fotis; Vioque, Jesus; Hingorani, Aroon D.; Sofat, Reecha; Dean, Michael; Sawitzke, Julie; Seddon, Johanna M.; Peter, Inga; Webster, Andrew R.; Moore, Anthony T.; Yates, John R.W.; Cipriani, Valentina; Fritsche, Lars G.; Weber, Bernhard H.F.; Keilhauer, Claudia N.; Lotery, Andrew J.; Ennis, Sarah; Klein, Michael L.; Francis, Peter J.; Stambolian, Dwight; Orlin, Anton; Gorin, Michael B.; Weeks, Daniel E.; Kuo, Chia‐ling ; Swaroop, Anand; Othman, Mohammad; Kanda, Atsuhiro; Chen, Wei; Abecasis, Goncalo R.; Wright, Alan F.; Hayward, Caroline; Baird, Paul N.; Guymer, Robyn H.; Attia, John; Thakkinstian, Ammarin; Silvestri, Giuliana (2011). "Evidence of association of APOE with ageâ related macular degeneration â a pooled analysis of 15 studies ." Human Mutation 32(12): 1407-1416. <http://hdl.handle.net/2027.42/88045>en_US
dc.identifier.issn1059-7794en_US
dc.identifier.issn1098-1004en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88045
dc.description.abstractAge‐related macular degeneration (AMD) is the most common cause of incurable visual impairment in high‐income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low‐density cholesterol modulation. Potential interaction between APOE and sex, and smoking status has been reported. We present a pooled analysis ( n = 21,160) demonstrating associations between late AMD and APOε4 (odds ratio [OR] = 0.72 per haplotype; confidence interval [CI]: 0.65–0.74; P = 4.41×10 −11 ) and APOε2 (OR = 1.83 for homozygote carriers; CI: 1.04–3.23; P = 0.04), following adjustment for age group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR = 1.54; CI: 1.38–1.72; P = 2.8×10 −15 ) and atrophic (OR = 1.38; CI: 1.18–1.61; P = 3.37×10 −5 ) AMD but not early AMD (OR = 0.94; CI: 0.86–1.03; P = 0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyond ε2 and ε4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low‐density cholesterol specifically, in AMD disease etiology. 32:1407–1416, 2011. ©2011 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherAge‐Related Macular Degenerationen_US
dc.subject.otherAMDen_US
dc.subject.otherApolipoprotein Een_US
dc.subject.otherAPOEen_US
dc.subject.otherCase‐Control Association Studyen_US
dc.titleEvidence of association of APOE with age‐related macular degeneration ‐ a pooled analysis of 15 studiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherCentre for Public Health, Royal Victoria Hospital, Queen's University Belfast, Belfast, Northern Irelanden_US
dc.contributor.affiliationotherCentre for Vision and Vascular Science, Royal Victoria Hospital, Queen's University Belfast, Belfast, Northern Irelanden_US
dc.contributor.affiliationotherDepartments of Ophthalmologyen_US
dc.contributor.affiliationotherEpidemiology, Erasmus Medical Centre, Rotterdam, The Netherlandsen_US
dc.contributor.affiliationotherThe Netherlands Institute for Neuroscience, KNAW, Amsterdam, The Netherlandsen_US
dc.contributor.affiliationotherDepartment of Ophthalmology AMC, Amsterdam, The Netherlandsen_US
dc.contributor.affiliationotherDepartment of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdomen_US
dc.contributor.affiliationotherEye Department, Stavanger University Hospital, University of Bergen, Stavanger, Norwayen_US
dc.contributor.affiliationotherDepartment of Epidemiology and Biostatistics, National Institute for Health Development, Tallinn, Estoniaen_US
dc.contributor.affiliationotherClinique Ophthalmologique, Universitaire de Creteil, Paris, Franceen_US
dc.contributor.affiliationotherClinica Oculistica,Unversita degli studi di Verona, Verona, Italyen_US
dc.contributor.affiliationotherDepartment of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greeceen_US
dc.contributor.affiliationotherDepartamento Salud Publica, University Miguel Hernandez, Alicante, Spainen_US
dc.contributor.affiliationotherCIBERESP, Alicante, Spainen_US
dc.contributor.affiliationotherUniversity Centre for Clinical Pharmacology, University College London, London, United Kingdomen_US
dc.contributor.affiliationotherDepartment of Medicine, University College London, London, United Kingdomen_US
dc.contributor.affiliationotherCancer and Inflammation Program, National Cancer Institute, Frederick, Marylanden_US
dc.contributor.affiliationotherDepartment of Ophthalmology, Tufts University School of Medicine, Boston, Massachusettsen_US
dc.contributor.affiliationotherTufts Medical Center, Boston, Massachusettsen_US
dc.contributor.affiliationotherDepartment of Genetics & Genomic Sciences, Mount Sinai School of Medicine, New York, New Yorken_US
dc.contributor.affiliationotherInstitute of Ophthalmology, University College London, London, United Kingdomen_US
dc.contributor.affiliationotherMoorfields Eye Hospital, London, United Kingdomen_US
dc.contributor.affiliationotherDepartment of Medical Genetics, University of Cambridge, Cambridge, United Kingdomen_US
dc.contributor.affiliationotherInstitute of Human Genetics, University of Regensburg, Regensburg, Germanyen_US
dc.contributor.affiliationotherDepartment of Ophthalmology, University Hospital Würzburg, Würzburg, Germanyen_US
dc.contributor.affiliationotherClinical Neurosciences Division, School of Medicine, University of Southampton, Southampton, United Kingdomen_US
dc.contributor.affiliationotherSouthampton Eye Unit, Southampton General Hospital, Southampton, United Kingdomen_US
dc.contributor.affiliationotherGenetic Epidemiology & Bioinformatics Group Human Genetics Division, University of Southampton, United Kingdomen_US
dc.contributor.affiliationotherMacular Degeneration Center, Casey Eye Institute, Oregon Health and Science University, Oregonen_US
dc.contributor.affiliationotherDepartment of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvaniaen_US
dc.contributor.affiliationotherDepartments of Ophthalmology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Californiaen_US
dc.contributor.affiliationotherDepartment of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvaniaen_US
dc.contributor.affiliationotherNeurobiology‐Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Marylanden_US
dc.contributor.affiliationotherMRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdomen_US
dc.contributor.affiliationotherCentre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australiaen_US
dc.contributor.affiliationotherCentre for Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, Australiaen_US
dc.contributor.affiliationotherHunter Medical Research Institute, John Hunter Hospital, Newcastle, Australiaen_US
dc.contributor.affiliationotherDepartment of General Medicine, John Hunter Hospital, Newcastle, Australiaen_US
dc.contributor.affiliationotherSection for Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailanden_US
dc.contributor.affiliationotherCentre for Public Health, Royal Victoria Hospital, Queen's University Belfast, Belfast, Northern Ireland BT12 6BAen_US
dc.identifier.pmid21882290en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88045/1/humu_21577_sm_SuppInfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88045/2/21577_ftp.pdf
dc.identifier.doi10.1002/humu.21577en_US
dc.identifier.sourceHuman Mutationen_US
dc.identifier.citedreferenceAnderson DH, Ozaki S, Nealon M, Neitz J, Mullins RF, Hageman GS, Johnson LV. 2001. Local cellular sources of apolipoprotein E in the human retina and retinal pigmented epithelium: implications for the process of drusen formation. Am J Ophthalmol 131: 767 – 781.en_US
dc.identifier.citedreferenceAng LS, Cruz RP, Hendel A, Granville DJ. 2008. Apolipoprotein E, an important player in longevity and age‐related diseases. Exp Gerontol 43: 615 – 622.en_US
dc.identifier.citedreferenceArtiga MJ, Bullido MJ, Frank A, Sastre I, Recuero M, García MA, Lendon CL, Han SW, Morris JC, Vázquez J, Goate A, Valdivieso F. 1998. Risk for Alzheimer's disease correlates with transcriptional activity of the APOE gene. Hum Mol Gene 7: 1887 – 1892.en_US
dc.identifier.citedreferenceAugood C, Fletcher A, Bentham G, Chakravarthy U, de Jong PT, Rahu M, Seland J, Soubrane G, Tomazzoli L, Topouzis F, Vioque J, Young I. 2004. Methods for a population‐based study of the prevalence of and risk factors for age‐related maculopathy and macular degeneration in elderly European populations: the EUREYE study. Ophthalmic Epidemiol 11: 117 – 129.en_US
dc.identifier.citedreferenceBaird PN, Guida E, Chu DT, Vu HT, Guymer RH. 2004. The E2 and E4 alleles of the apolipoprotein gene are associated with age‐related macular degeneration. Invest Ophthalmol Vis Sci 45: 1311 – 1315.en_US
dc.identifier.citedreferenceBaird PN, Richardson AJ, Robman LD, Dimitrov PN, Tikellis G, McCarty CA, Guymer RH. 2006. Apolipoprotein ( APOE ) gene is associated with progression of age‐related macular degeneration (AMD). Hum Mutat 27: 337 – 342.en_US
dc.identifier.citedreferenceBeatty S, Koh H, Phil M, Henson D, Boulton M. 2000. The role of oxidative stress in the pathogenesis of age‐related macular degeneration. Surv Ophthalmol 45: 115 – 134.en_US
dc.identifier.citedreferenceBennet AM, di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, Keavney B, Collins R, Wiman B, de Faire U, Danesh J. 2007. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 298: 1300 – 1311.en_US
dc.identifier.citedreferenceBergeron‐Sawitzke J, Gold B, Olsh A, Schlotterbeck S, Lemon K, Visvanathan K, Allikmets R, Dean M. 2009. Multilocus analysis of age‐related macular degeneration. Eur J Hum Genet 17: 1190 – 1199.en_US
dc.identifier.citedreferenceBojanowski CM, Shen D, Chew EY, Ning B, Csaky KG, Green WR, Chan CC, Tuo J. 2006. An apolipoprotein E variant may protect against age‐related macular degeneration through cytokine regulation. Environ Mol Mutagen 47: 594 – 602.en_US
dc.identifier.citedreferenceCampillos M, Lamas JR, Garcia MA, Bullido MJ, Valdivieso F, Vazquez J. 2003. Specific interaction of heterogeneous nuclear ribonucleoprotein A1 with the ‐219T allelic form modulates APOE promoter activity. Nucleic Acids Res 31: 3063 – 3070.en_US
dc.identifier.citedreferenceCanter JA, Olson LM, Spencer K, Schnetz‐Boutaud N, Anderson B, Hauser MA, Schmidt S, Postel EA, Agarwal A, Pericak‐Vance MA, Sternberg P Jr, Haines JL. 2008. Mitochondrial DNA polymorphism A4917G is independently associated with age‐related macular degeneration. PLoS One 3: e2091.en_US
dc.identifier.citedreferenceCenters for Disease Control and Prevention (CDC). 2004. Prevalence of visual impairment and selected eye diseases among persons aged >/= 50 years with and without diabetes‐ United States, 2002. MMWR Morb Mortal Wkly Rep 53: 1069 – 1071.en_US
dc.identifier.citedreferenceChen W, Stambolian D, Edwards AO, Branham KE, Othman M, Jakobsdottir J, Tosakulwong N, Pericak‐Vance MA, Campochiaro PA, Klein ML, Tan PL, Conley YP, Kanda A, Kopplin L, Li Y, Augustaitis KJ, Karoukis AJ, Scott WK, Agarwal A, Kovach JL, Schwartz SG, Postel EA, Brooks M, Baratz KH, Brown WL; Complications of Age‐Related Macular Degeneration Prevention Trial Research Group, Brucker AJ, Orlin A, Brown G, Ho A, Regillo C, Donoso L, Tian L, Kaderli B, Hadley D, Hagstrom SA, Peachey NS, Klein R, Klein BE, Gotoh N, Yamashiro K, Ferris Iii F, Fagerness JA, Reynolds R, Farrer LA, Kim IK, Miller JW, Cortón M, Carracedo A, Sanchez‐Salorio M, Pugh EW, Doheny KF, Brion M, Deangelis MM, Weeks DE, Zack DJ, Chew EY, Heckenlively JR, Yoshimura N, Iyengar SK, Francis PJ, Katsanis N, Seddon JM, Haines JL, Gorin MB, Abecasis GR, Swaroop A. 2010. Genetic variants near TIMP3 and high‐density lipoprotein‐associated loci influence susceptibility to age‐related macular degeneration. Proc Natl Acad Sci USA 107: 7401 – 7406.en_US
dc.identifier.citedreferenceClemons TE, Milton RC, Klein R, Seddon JM, Ferris 3rd FL. 2005. Age‐Related Eye Disease Study Research Group. Risk factors for the incidence of advanced age‐related macular degeneration in the age‐related eye disease study (AREDS) AREDS report no. 19. Ophthalmol 112: 533 – 539.en_US
dc.identifier.citedreferenceConley YP, Thalamuthu A, Jakobsdottir J, Weeks DE, Mah T, Ferrell RE, Gorin MB. 2005. Candidate gene analysis suggests a role for fatty acid biosynthesis and regulation of the complement system in the etiology of age‐related maculopathy. Hum Mol Genet 14: 1991 – 2002.en_US
dc.identifier.citedreferenceConnor WE, Duell PB, Kean R, Wang Y. 2007. The prime role of HDL to transport lutein into the retina: evidence from HDL‐deficient WHAM chicks having a mutant ABCA1 transporter. Invest Ophthalmol Vis Sci 48: 4226 – 4231.en_US
dc.identifier.citedreferenceCorbo RM, Scacchi, R. 1999. Apolipoprotein E ( APOE ) allele distribution in the world. Is APOE * 4 a ‘thrifty’ allele? Ann Hum Genet 63: 301 – 310.en_US
dc.identifier.citedreferenceCrabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG. 2002. Drusen proteome analysis: an approach to the etiology of age‐related macular degeneration. Proc Natl Acad Sci USA 9: 14682 – 14687.en_US
dc.identifier.citedreferenceCurcio CA, Johnson M, Huang JD, Rudolf M. 2009. Aging, age‐related macular degeneration, and the response‐to‐retention of apolipoprotein B‐containing lipoproteins. Prog Retin Eye Res 28: 393 – 422.en_US
dc.identifier.citedreferenceDandekar SS, Jenkins SA, Peto T, Bird AC, Webster AR. 2006. Does smoking influence the type of age related macular degeneration causing visual impairment? Br J Ophthalmol 90: 724 – 727.en_US
dc.identifier.citedreferenceDewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M, Barnstable C, Pang CP, Hoh J. 2006. HTRA1 promoter polymorphism in wet age‐related macular degeneration. Science 314: 989 – 992.en_US
dc.identifier.citedreferenceDudbridge F. 2008. Likelihood‐based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 66: 87 – 98.en_US
dc.identifier.citedreferenceEdwards AO, Ritter R III, Abel KJ, Manning A, Panhuysen C, Farrer LA. 2005. Complement factor H polymorphism and age‐related macular degeneration. Science 308: 421 – 424.en_US
dc.identifier.citedreferenceEnnis S, Jomary C, Mullins R, Cree A, Chen X, Macleod A, Jones S, Collins A, Stone E, Lotery A. 2008. Association between the SERPING1 gene and age‐related macular degeneration: a two‐stage case‐control study. Lancet 372: 1828 – 1834.en_US
dc.identifier.citedreferenceEvans J, Wormald R. 1996. Is the incidence of registrable age‐related macular degeneration increasing? Br J Ophthalmol 80, 9 – 14.en_US
dc.identifier.citedreferenceFagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM. 2009. Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet 17: 100 – 104.en_US
dc.identifier.citedreferenceFrancis PJ, Hamon SC, Ott J, Weleber RG, Klein ML. 2009. Polymorphisms in C2, CFB and C3 are associated with progression to advanced age related macular degeneration associated with visual loss. J Med Genet 46: 300 – 307.en_US
dc.identifier.citedreferenceFritsche LG, Freitag‐Wolf S, Bettecken T, Meitinger T, Keilhauer CN, Krawczak M, Weber BH. 2009. Age‐related macular degeneration and functional promoter and coding variants of the apolipoprotein E gene. Hum Mutat 30: 1048 – 1053.en_US
dc.identifier.citedreferenceFritsche LG, Loenhardt T, Janssen A, Fisher SA, Rivera A, Keilhauer CN, Weber BH. 2008. Age‐related macular degeneration is associated with an unstable ARMS2 ( LOC387715 ) mRNA. Nat Genet 40: 892 – 896.en_US
dc.identifier.citedreferenceGold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT; AMD Genetics Clinical Study Group, Hageman GS, Dean M, Allikmets R. 2006. Variation in factor B ( BF ) and complement component 2 ( C2 ) genes is associated with age‐related macular degeneration. Nat Genet 38: 458 – 462.en_US
dc.identifier.citedreferenceHaan MN, Klein R, Klein BE, Deng Y, Blythe LK, Seddon JM, Musch DC, Kuller LH, Hyman LG, Wallace RB. 2006. Hormone therapy and age‐related macular degeneration: the women's health initiative sight exam study. Arch Ophthalmol 124: 988 – 992.en_US
dc.identifier.citedreferenceHadley D, Orlin A, Brown G, Brucker AJ, Ho AC, Regillo CD, Donoso LA, Tian L, Kaderli B, Stambolian D. 2010. Analysis of six genetic risk factors highly associated with AMD in the region surrounding ARMS2 and HTRA1 on chromosome 10q26. Invest Ophthalmol Vis Sci 51: 2191 – 2196.en_US
dc.identifier.citedreferenceHageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJ, Silvestri G, Russell SR, Klaver CC, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R. 2005. A common haplotype in the complement regulatory gene factor H ( HF1/CFH ) predisposes individuals to age‐related macular degeneration. Proc Natl Acad Sci USA 102: 7227 – 7232.en_US
dc.identifier.citedreferenceHaines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz‐Boutaud N, Agarwal A, Postel EA, Pericak‐Vance MA. 2005. Complement factor H variant increases the risk of age‐related macular degeneration. Science 308: 419 – 421.en_US
dc.identifier.citedreferenceHammond BR Jr, Wooten BR, Snodderly DM. 1996. Cigarette smoking and the retinal carotenoids: implications for age‐related macular degeneration. Vision Res 18: 3003 – 3009.en_US
dc.identifier.citedreferenceHughes AE, Orr N, Esfandiary H, Diaz‐Torres M, Goodship T, Chakravarthy U. 2006. A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age‐related macular degeneration. Nat Genet 38: 1173 – 1177.en_US
dc.identifier.citedreferenceJakobsdottir J, Conley YP, Weeks DE, Mah TS, Ferrell RE, Gorin MB. 2005. Susceptibility genes for age‐related maculopathy on chromosome 10q26. Am J Hum Genet 77: 389 – 407.en_US
dc.identifier.citedreferenceKanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R, He S, Lyons R, Abecasis GR, Swaroop A. 2007. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age‐related macular degeneration. Proc Natl Acad Sci USA 104: 16227 – 16232.en_US
dc.identifier.citedreferenceKlaver CC, Kliffen M, van Duijn CM, Hofman A, Cruts M, Grobbee DE, van Broeckhoven C, de Jong PT. 1998. Genetic association of apolipoprotein E with age‐related macular degeneration. Am J Hum Genet 63: 200 – 206.en_US
dc.identifier.citedreferenceKlein R, Klein B, Linton K. 1992. Prevalence of age‐related maculopathy: the Beaver Dam eye study. Ophthalmol 99: 933 – 943.en_US
dc.identifier.citedreferenceKlein R, Knudtson MD, Cruickshanks KJ, Klein BE. 2008. Further observations on the association between smoking and the long‐term incidence and progression of age‐related macular degeneration: the Beaver Dam Eye Study. Arch Ophthalmol 126: 115 – 121.en_US
dc.identifier.citedreferenceKlein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. 2005. Complement factor H polymorphism in age‐related macular degeneration. Science 308: 385 – 389.en_US
dc.identifier.citedreferenceLoane E, McKay GJ, Nolan JM, Beatty S. 2010. Apolipoprotein E genotype is associated with macular pigment optical density. Invest Ophthalmol Vis Sci 51: 2636 – 2643.en_US
dc.identifier.citedreferenceMaller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM. 2007. Variation in complement factor 3 is associated with risk of age‐related macular degeneration. Nat Genet 39: 1200 – 1201.en_US
dc.identifier.citedreferenceMcKay GJ, Dasari S, Patterson CC, Chakravarthy U, Silvestri G. 2010. Complement component 3: an assessment of association with AMD and analysis of gene‐gene and gene‐environment interactions in a Northern Irish cohort. Mol Vis 16: 194 – 199.en_US
dc.identifier.citedreferenceMcKay GJ, Silvestri G, Chakravarthy U, Dasari S, Fritsche LG, Weber BH, Keilhauer CN, Klein ML, Francis PJ, Klaver CC, Vingerling JR, Ho L, de Jong PTDV, Dean M, Sawitzke J, Baird PN, Guymer RH, Stambolian D, Orlin A, Seddon JM, Peter I, Wright AF, Hayward C, Lotery AJ, Ennis S, Gorin MB, Weeks DE, Kuo CL, Hingorani AD, Sofat R, Cipriani V, Swaroop A, Othman M, Kanda A, Chen W, Abecasis GR, Yates JR, Webster AR, Moore AT, Seland JH, Rahu M, Soubrane G, Tomazzoli L, Topouzis F, Vioque J, Young IS, Fletcher AE, and Patterson CC. 2011. Variations with age in apolipoprotein E frequency in a pooled analysis of a large group of older people. Am J Epidemiol 173: 1357 – 1364.en_US
dc.identifier.citedreferenceMcKay GJ, Silvestri G, Patterson CC, Hogg RE, Chakravarthy U, Hughes AE. 2009. Further assessment of the complement component 2 and factor B region associated with age‐related macular degeneration. Invest Ophthalmol Vis Sci 50: 533 – 539.en_US
dc.identifier.citedreferenceMinelli C, Thompson JR, Abrams KR, Thakkinstian A, Attia J. 2005. The choice of a genetic model in the meta‐analysis of molecular association studies. Int J Epidemiol 34: 1319 – 1328.en_US
dc.identifier.citedreferenceNeale BM, Fagerness J, Reynolds R, Sobrin L, Parker M, Raychaudhuri S, Tan PL, Oh EC, Merriam JE, Souied E, Bernstein PS, Li B, Frederick JM, Zhang K, Brantley MA Jr, Lee AY, Zack DJ, Campochiaro B, Campochiaro P, Ripke S, Smith RT, Barile GR, Katsanis N, Allikmets R, Daly MJ, Seddon JM. 2010. Genome‐wide association study of advanced age‐related macular degeneration identifies a role of the hepatic lipase gene ( LIPC ). Proc Natl Acad Sci USA 107: 7395 – 7400.en_US
dc.identifier.citedreferencePark KH, Fridley BL, Ryu E, Tosakulwong N, Edwards AO. 2009. Complement component 3 ( C3 ) haplotypes and risk of advanced age‐related macular degeneration. Invest Ophthalmol Vis Sci 50: 3386 – 3393.en_US
dc.identifier.citedreferenceRamos MC, Matias S, Artiga MJ, Pozueta J, Sastre I, Valdivieso F, Bullido MJ. 2005. Neuronal specific regulatory elements in apolipoprotein E gene proximal promoter. Neuroreport 16: 1027 – 1030.en_US
dc.identifier.citedreferenceRivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T, Weber BH. 2005. Hypothetical LOC387715 is a second major susceptibility gene for age‐related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 14: 3227 – 3236.en_US
dc.identifier.citedreferenceSan Giovanni JP, Arking DE, Iyengar SK, Elashoff M, Clemons TE, Reed GF, Henning AK, Sivakumaran TA, Xu X, DeWan A, Agrón E, Rochtchina E, Sue CM, Wang JJ, Mitchell P, Hoh J, Francis PJ, Klein ML, Chew EY, Chakravarti A. 2009. Mitochondrial DNA variants of respiratory complex I that uniquely characterize haplogroup T2 are associated with increased risk of age‐related macular degeneration. PLoS One 4: e5508.en_US
dc.identifier.citedreferenceSchmidt S, Klaver C, Saunders A, Postel E, De La Paz M, Agarwal A, Small K Udar N, Ong J, Chalukya M, Nesburn A, Kenney C, Domurath R, Hogan M, Mah T, Conley Y, Ferrell R, Weeks D, de Jong PT, van Duijn C, Haines J, Pericak‐Vance M, Gorin M. 2002. A pooled case–control study of the apolipoprotein E ( APOE ) gene in age‐related maculopathy. Ophthalmic. Genet 23: 209 – 223.en_US
dc.identifier.citedreferenceSchmidt S, Haines JL, Postel EA, Agarwal A, Kwan SY, Gilbert JR, Pericak‐Vance MA, Scott WK. 2005. Joint effects of smoking history and APOE genotypes in age‐related macular degeneration. Mol Vis 11: 941 – 949.en_US
dc.identifier.citedreferenceSeddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT, Yannuzzi LA, Willett W, the Eye Disease Case‐Control Study Group. 1994. Dietary carotenoids, vitamins A, C, and E, and advanced age‐related macular degeneration. Eye disease case‐control study group. JAMA 272: 1413 – 1420.en_US
dc.identifier.citedreferenceSiest G, Pillot T, Régis‐Bailly A, Leininger‐Muller B, Steinmetz J, Galteau MM, Visvikis S. 1995. Apolipoprotein E: an important gene and protein to follow in laboratory medicine. Clin Chem 41: 1068 – 1086.en_US
dc.identifier.citedreferenceSmith W, Mitchell P, Leeder SR. 1996. Smoking and age‐related maculopathy: the blue mountain eye study. Arch Ophthalmol 114: 1518 – 1523.en_US
dc.identifier.citedreferenceSnow KK, Seddon JM. 1999. Do age‐related macular degeneration and cardiovascular disease share common antecedents? Ophthalmic Epidemiol 6: 125 – 143.en_US
dc.identifier.citedreferenceSouied EH, Benlian P, Amouyel P, Feingold J, Lagarde JP, Munnich A, Kaplan J, Coscas G, Soubrane G. 1998. The epsilon4 allele of the apolipoprotein E gene as a potential protective factor for exudative age‐related macular degeneration. Am J Ophthalmol 125: 353 – 359.en_US
dc.identifier.citedreferenceStryker WS, Kaplan LA, Stein EA, Stampfer MJ, Sober A, Willett WC. 1988. The relation of diet, cigarette smoking, and alcohol consumption to plasma beta‐carotene and alpha‐tocopherol levels. Am J Epidemiol 127: 283 – 296.en_US
dc.identifier.citedreferenceSuner IJ, Espinosa‐Heidmann DG, Marin‐Castano ME, Hernandez EP, Pereira‐Simon S, Cousins SW. 2004. Nicotine increases size and severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 45: 311 – 317.en_US
dc.identifier.citedreferenceSwaroop A, Branham KE, Chen W, Abecasis G. 2007. Genetic susceptibility to age‐related macular degeneration: a paradigm for dissecting complex disease traits. Hum Mol Genet 16 Spec No. 2: R174 – R182.en_US
dc.identifier.citedreferenceThakkinstian A, Bowe S, McEvoy M, Smith W, Attia J. 2006. Association between apolipoprotein E polymorphisms and age‐related macular degeneration: a HuGE review and meta‐analysis. Am J Epidemiol 164: 813 – 822.en_US
dc.identifier.citedreferencevan Leeuwen R, Klaver CC, Vingerling JR, Hofman A, van Duijn CM, Stricker BH, de Jong PT. 2004. Cholesterol and age‐related macular degeneration: is there a link ? Am J Ophthalmol 137: 750 – 752.en_US
dc.identifier.citedreferenceVingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CF, de Jong PT. 1995. The prevalence of age‐related maculopathy in the Rotterdam study. Ophthalmol 102: 205 – 210.en_US
dc.identifier.citedreferenceVingerling JR, Hofman A, Grobbee DE, de Jong PT. 1996. Age‐related macular degeneration and smoking: the Rotterdam study. Arch Ophthalmol 114: 1193 – 1196.en_US
dc.identifier.citedreferenceXu L, Li Y, Zheng Y, Jonas JB. 2006. Associated factors for age‐related maculopathy in the adult population in China: the Beijing eye study. Br J Ophthalmol 90: 1087 – 1090.en_US
dc.identifier.citedreferenceYang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, Chen H, Zhao Y, Pearson E, Li X, Chien J, Dewan A, Harmon J, Bernstein PS, Shridhar V, Zabriskie NA, Hoh J, Howes K, Zhang K. 2006. A variant of the HTRA1 gene increases susceptibility to age‐related macular degeneration. Science 314: 992 – 993.en_US
dc.identifier.citedreferenceYates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF, Armbrecht AM, Dhillon B, Deary IJ, Redmond E, Bird AC, Moore AT; Genetic Factors in AMD Study Group. 2007. Complement C3 variant and the risk of age‐related macular degeneration. N Engl J Med 357: 553 – 561.en_US
dc.identifier.citedreferenceZarbin MA. 2004. Current concepts in the pathogenesis of age‐related macular degeneration. Arch Ophthalmol 122: 598 – 614.en_US
dc.identifier.citedreferenceZareparsi S, Reddick AC, Branham KE, Moore KB, Jessup L, Thoms S, Smith‐Wheelock M, Yashar BM, Swaroop A. 2004. Association of apolipoprotein E alleles with susceptibility to age‐related macular degeneration in a large cohort from a single center. Invest Ophthalmol Vis Sci 45: 1306 – 1310.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.