Show simple item record

Historical microbiology: revival and phylogenetic analysis of the luminous bacterial cultures of M . W . B eijerinck

dc.contributor.authorFigge, Marian J.en_US
dc.contributor.authorRobertson, Lesley A.en_US
dc.contributor.authorAst, Jennifer C.en_US
dc.contributor.authorDunlap, Paul V.en_US
dc.date.accessioned2011-12-05T18:33:12Z
dc.date.available2013-02-01T20:26:17Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationFigge, Marian J.; Robertson, Lesley A.; Ast, Jennifer C.; Dunlap, Paul V. (2011). "Historical microbiology: revival and phylogenetic analysis of the luminous bacterial cultures of M . W . B eijerinck." FEMS Microbiology Ecology 78(3): 463-472. <http://hdl.handle.net/2027.42/88047>en_US
dc.identifier.issn0168-6496en_US
dc.identifier.issn1574-6941en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88047
dc.description.abstractLuminous bacteria isolated by M artinus W . B eijerinck were sealed in glass ampoules in 1924 and 1925 and stored under the names P hotobacterium phosphoreum and ‘ P hotobacterium splendidum ’. To determine if the stored cultures were viable and to assess their evolutionary relationship with currently recognized bacteria, portions of the ampoule contents were inoculated into culture medium. Growth and luminescence were evident after 13 days of incubation, indicating the presence of viable cells after more than 80 years of storage. The B eijerinck strains are apparently the oldest bacterial cultures to be revived from storage. Multi‐locus sequence analysis, based on the 16S rRNA , gapA , gyrB , pyrH , recA , luxA , and luxB genes, revealed that the B eijerinck strains are distant from the type strains of P . phosphoreum , ATCC 11040 T , and V ibrio splendidus , ATCC 33125 T , and instead form an evolutionarily distinct clade of V ibrio . Newly isolated strains from coastal seawater in N orway, F rance, U ruguay, M exico, and J apan grouped with the B eijerinck strains, indicating a global distribution for this new clade, designated as the beijerinckii clade. Strains of the beijerinckii clade exhibited little sequence variation for the seven genes and approximately 6300 nucleotides examined despite the geographic distances and the more than 80 years separating their isolation. Gram‐negative bacteria therefore can survive for many decades in liquid storage, and in nature, they do not necessarily diverge rapidly over time.en_US
dc.publisherJohn Wiley and Sonsen_US
dc.subject.otherM Artinus W . B Eijerincken_US
dc.subject.otherHistoric Microbiologyen_US
dc.subject.otherLuminous Bacteriaen_US
dc.subject.otherRevivalen_US
dc.subject.otherPhylogenyen_US
dc.titleHistorical microbiology: revival and phylogenetic analysis of the luminous bacterial cultures of M . W . B eijerincken_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22066815en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88047/1/fem1177.pdf
dc.identifier.doi10.1111/j.1574-6941.2011.01177.xen_US
dc.identifier.sourceFEMS Microbiology Ecologyen_US
dc.identifier.citedreferenceAst JC & Dunlap PV ( 2004 ) Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Arch Microbiol 181: 352 – 361.en_US
dc.identifier.citedreferenceAst JC & Dunlap PV ( 2005 ) Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 7: 1641 – 1654.en_US
dc.identifier.citedreferenceAst JC, Urbanczyk H & Dunlap PV ( 2007a ) Natural merodiploidy of the lux ‐ rib operon of Photobacterium leiognathi from coastal waters of Honshu, Japan. J Bacteriol 189: 6148 – 6158.en_US
dc.identifier.citedreferenceAst JC, Urbanczyk H, Cleenwerk I, Engelbeen K, Thompson F, DeVos P & Dunlap PV ( 2007b ) Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep‐sea fishes. Int J Syst Evol Microbiol 57: 2073 – 2078.en_US
dc.identifier.citedreferenceAst JC, Urbanczyk H & Dunlap PV ( 2009 ) Multi‐gene analysis reveals previously unrecognized phylogenetic diversity in Aliivibrio ( Gammaproteobacteria: Vibrionaceae ). Syst Appl Microbiol 32: 379 – 386.en_US
dc.identifier.citedreferenceBattley EH ( 1987 ) Energetics of Microbial Growth. John Wiley and Sons, New York, NY.en_US
dc.identifier.citedreferenceBaumann P, Baumann L & Mandell M ( 1971 ) Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol 107: 268 – 294.en_US
dc.identifier.citedreferenceBaumann P, Baumann L, Bang SS & Woolkalis MJ ( 1980 ) Reevaluation of the taxonomy of Vibrio, Beneckea, and Photobacterium: abolition of the genus Beneckea. Curr Microbiol 4: 127 – 132.en_US
dc.identifier.citedreferenceBaumann P, Furniss AL & Lee JV ( 1984 ) Genus Vibrio Pacini 1854. Bergey's Manual of Systematic Bacteriology, Vol. 1 ( Kreig NR & Holt JG, eds), pp. 518 – 538. Williams and Wilkins, Baltimore, MD.en_US
dc.identifier.citedreferenceBeijerinck MW ( 1889a ) Le Photobacterium luminosum, Bactérie lumineuse de la Mer du Nord. Arch Néerl Sci Exact Nat 23: 401 – 427.en_US
dc.identifier.citedreferenceBeijerinck MW ( 1889b ) Les bactéries lumineuses dans leurs rapports avec l'oxygène. Arch Néerl Sci Exact Nat 23: 416 – 427.en_US
dc.identifier.citedreferenceBeijerinck MW ( 1891 ) Sur l'aliment photogène et l'aliment plastique des bactéries lumineuses. Arch Néerl Sci Exact Nat 24: 369 – 442.en_US
dc.identifier.citedreferenceBeijerinck MW ( 1916 ) Die Leuchtbakterien der Nordsee im August und September. Folia Microbiol 4: 15 – 40.en_US
dc.identifier.citedreferenceCalhoun DH ( 1985 ) Bacterial longevity in salt‐free medium. Responses. ASM News 51: 1 – 2.en_US
dc.identifier.citedreferenceCash HA ( 1985 ) Bacterial longevity in salt‐free medium. Responses. ASM News 51: 2.en_US
dc.identifier.citedreferenceCohn F ( 1878 ) Vezameling van stukken betreffende het geneeskundig staatsoetzicht in Neederland, p. 126 (as quoted in reference 10, p. 401).en_US
dc.identifier.citedreferenceDunlap PV ( 2009 ) Bioluminescence, microbial. The Desk Encyclopedia of Microbiology ( Schaechter M, ed.), pp. 202 – 218. Elsevier, Oxford.en_US
dc.identifier.citedreferenceDunlap PV & Kita‐Tsukamoto K ( 2006 ) Luminous bacteria. The Prokaryotes. A Handbook on the Biology of Bacteria, 3rd edn. Vol. 2 (Ecophysiology and Biochemistry) ( Dworkin M, Falkow S, Rosenberg E, Schleifer K‐H & Stackebrandt E, eds), pp. 863 – 892. Springer‐Verlag, New York, NY.en_US
dc.identifier.citedreferenceDunlap PV, Jiemji A, Ast JC, Pearce MM, Marques RR & Lavilla‐Pitogo CR ( 2004 ) Genomic polymorphism in symbiotic populations of Photobacterium leiognathi. Environ Microbiol 6: 145 – 158.en_US
dc.identifier.citedreferenceDunlap PV, Davis KM, Tomiyama S, Fujino M & Fukui A ( 2008 ) Devlopmental and microbiological analysis of the inception of bioluminescent symbiosis in the marine fish Nuchequula nuchalis (Perciformes: Leiognathidae). Appl Environ Microbiol 74: 7471 – 7481.en_US
dc.identifier.citedreferenceEnglish VC & McManus AT ( 1985 ) Bacterial longevity in salt‐free medium. Responses. ASM News 51: 1.en_US
dc.identifier.citedreferenceFischer B ( 1887 ) Bacteriologische Untersuchungen auf einer Reise nach West Indien. II. Uber einen lichtentwickelnden, in Meerswasser gefunden Spaltpilz. Zeitschr Hyg Infektkr 2: 54 – 95.en_US
dc.identifier.citedreferenceGoloboff PA, Farris JS & Nixon KC ( 2006 ) 10 August, revision date. TNT: Tree Analysis Using New Technology, Version 1.0. http://www.zmuc.dk/public/phylogeny/TNT/.en_US
dc.identifier.citedreferenceHaneda Y ( 1981 ) Preservation and utilization of luminous bacteria as a light source. Sci Rep Yokosuka Cy Mus 28: 79 – 83.en_US
dc.identifier.citedreferenceHartsell SE ( 1956 ) Maintenance of cultures under paraffin oil. Appl Microbiol 4: 350 – 355.en_US
dc.identifier.citedreferenceHarvey EN ( 1952 ) Bioluminescence. Academic Press, New York, NY.en_US
dc.identifier.citedreferenceHarvey EN ( 1957 ) A history of Luminescence from the Earliest Times Until 1900. American Philosophical Society, Philadelphia, PA.en_US
dc.identifier.citedreferenceIacobellis NS & DeVay JE ( 1986 ) Long‐term storage of plant‐pathogenic bacteria in sterile distilled water. Appl Environ Microbiol 52: 388 – 389.en_US
dc.identifier.citedreferenceKamp AF, La Rivière JWM & Verhoven W (eds) ( 1959 ) Albert Jan Kluyver, His Life and Work. North‐Holland Publishing Company, Amsterdam.en_US
dc.identifier.citedreferenceLiu PV ( 1984 ) Bacterial longevity in salt‐free medium. ASM News 50: 471.en_US
dc.identifier.citedreferenceLudwig F ( 1884 ) Micrococcus Pflugeri, ein neuer photogener Pilz. Hedwigia 23: 33 – 37.en_US
dc.identifier.citedreferenceMolisch H ( 1912 ) Leuchtende Pflanzen. Eine Physiologische Studie. Gustav Fischer, Jena.en_US
dc.identifier.citedreferenceMorita RY ( 1997 ) Bacteria in Oligotrophic Environments. Starvation‐Survival Lifestyle. Chapman and Hall, New York, NY.en_US
dc.identifier.citedreferenceMurray GRE ( 1985 ) More on bacterial bacterial longevity: the Murray collection. ASM News 51: 261 – 262.en_US
dc.identifier.citedreferenceNealson KH ( 1978 ) Isolation, identification and manipulation of luminous bacteria. Methods Enzymol 57: 153 – 166.en_US
dc.identifier.citedreferenceNeush J ( 1879 ) Bactéries lumineuses sur la viande fraîsche. J Pharm Chim Paris 29: 20 – 22.en_US
dc.identifier.citedreferencePedersen KL, Verdonck B, Austin DA et al. ( 1998 ) Taxonomic evidence that Vibrio carchariae Grimes et al. 1985 is a junior synonym of Vibrio harveyi (Johnson and Shunk 1936) Baumann et al. 1981. Int J Syst Bacteriol 48: 749 – 758.en_US
dc.identifier.citedreferencePflüger E ( 1875 ) Ueber die Phosphorescenz verwesender Organismen. Arch Ges Physiol 11: 222 – 263.en_US
dc.identifier.citedreferenceReichelt JL & Baumann P ( 1973 ) Taxonomy of the marine, luminous bacteria. Arch Mikrobiol 94: 283 – 330.en_US
dc.identifier.citedreferenceReichelt JL, Baumann P & Baumann L ( 1976 ) Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Arch Microbiol 110: 101 – 120.en_US
dc.identifier.citedreferenceRobertson LA ( 2003 ) The Delft School of Microbiology, from the nineteenth to the twenty‐first century. Adv Appl Microbiol 52: 357 – 388.en_US
dc.identifier.citedreferenceRobertson LA, Figge MJ & Dunlap PV ( 2011 ) Beijerinck and the bioluminescent bacteria: microbiological experiments in the late 19 th and early 20 th centuries. FEMS Microbiol Ecol 75: 185 – 194.en_US
dc.identifier.citedreferenceSkerman VBD, McGowan V & Sneath PHA ( 1980 ) Approved lists of bacterial names. Int J Syst Bacteriol 30: 225 – 420.en_US
dc.identifier.citedreferenceSneath PHA ( 1986 ) Nomenclature of bacteria. Biological Nomenclature Today. IUBS Monograph Series, No. 2. ( Ride WDL & Younès T, eds), pp. 36 – 48. IRL Press, Oxford.en_US
dc.identifier.citedreferenceSneath PHA (ed.) ( 1992 ) International Code of Nomenclature of Bacteria. American Society for Microbiology, Washington, DC.en_US
dc.identifier.citedreferenceSutton A, Buencamino R & Eisenstark E ( 2000 ) rpoS Mutants in archival cultures of Salmonella enterica serovar Typhimurium. J Bacteriol 182: 4375 – 4379.en_US
dc.identifier.citedreferenceThompson FL, Hoste B, Vademeulebroecke K, Engelbeen K, Denys R & Swings J ( 2002 ) Vibrio trachuri Iwamoto et al. 1995 is a junior synonym of Vibrio harveyi (Johnson and Shunk 1936) Baumann et al. 1981. Int J Syst Evol Microbiol 52: 973 – 976.en_US
dc.identifier.citedreferenceThompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB & Swings J ( 2005 ) Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71: 5107 – 5115.en_US
dc.identifier.citedreferenceUrbanczyk H, Ast JC, Higgins MJ, Carson J & Dunlap PV ( 2007 ) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov., and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57: 2823 – 2829.en_US
dc.identifier.citedreferenceUrbanczyk H, Ast JC & Dunlap PV ( 2011 ) Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiol Rev 35: 324 – 342.en_US
dc.identifier.citedreferencevan Iterson G Jr, den Dooren de Jong LE & Kluyver AJ ( 1940 ) Martinus Willem Beijerinck. His life and Work. Martinus Nijhoof, The Hague.en_US
dc.identifier.citedreferenceYoshizawa S, Wada M, Kita‐Tsukamoto K, Ikemoto E, Yokota A & Kogure K ( 2009 ) Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 59: 1645 – 1649.en_US
dc.identifier.citedreferenceYoshizawa S, Wada M, Yokota A & Kogure K ( 2010 ) Vibrio sagamiensis sp. nov., luminous marine bacteria isolated from sea water. J Gen Appl Microbiol 56: 499 – 507.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.