Show simple item record

Vitamin D receptor polymorphisms in patients with cutaneous melanoma

dc.contributor.authorOrlow, Ireneen_US
dc.contributor.authorRoy, Pampaen_US
dc.contributor.authorReiner, Anne S.en_US
dc.contributor.authorYoo, Sarahen_US
dc.contributor.authorPatel, Himalien_US
dc.contributor.authorPaine, Susanen_US
dc.contributor.authorArmstrong, Bruce K.en_US
dc.contributor.authorKricker, Anneen_US
dc.contributor.authorMarrett, Loraine D.en_US
dc.contributor.authorMillikan, Robert C.en_US
dc.contributor.authorThomas, Nancy E.en_US
dc.contributor.authorGruber, Stephen B.en_US
dc.contributor.authorAnton‐culver, Hodaen_US
dc.contributor.authorRosso, Stefanoen_US
dc.contributor.authorGallagher, Richard P.en_US
dc.contributor.authorDwyer, Terenceen_US
dc.contributor.authorKanetsky, Peter A.en_US
dc.contributor.authorBusam, Klausen_US
dc.contributor.authorFrom, Lynnen_US
dc.contributor.authorBegg, Colin B.en_US
dc.contributor.authorBerwick, Marianneen_US
dc.date.accessioned2011-12-05T18:34:05Z
dc.date.available2013-03-04T15:29:55Zen_US
dc.date.issued2012-01-15en_US
dc.identifier.citationOrlow, Irene; Roy, Pampa; Reiner, Anne S.; Yoo, Sarah; Patel, Himali; Paine, Susan; Armstrong, Bruce K.; Kricker, Anne; Marrett, Loraine D.; Millikan, Robert C.; Thomas, Nancy E.; Gruber, Stephen B.; Anton‐culver, Hoda ; Rosso, Stefano; Gallagher, Richard P.; Dwyer, Terence; Kanetsky, Peter A.; Busam, Klaus; From, Lynn; Begg, Colin B.; Berwick, Marianne (2012). "Vitamin D receptor polymorphisms in patients with cutaneous melanoma ." International Journal of Cancer 130(2): 405-418. <http://hdl.handle.net/2027.42/88076>en_US
dc.identifier.issn0020-7136en_US
dc.identifier.issn1097-0215en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88076
dc.description.abstractThe vitamin D receptor (VDR) gene has been associated with cancer risk, but only a few polymorphisms have been studied in relation to melanoma risk and the results have been inconsistent. We examined 38 VDR gene single nucleotide polymorphisms (SNPs) in a large international multicenter population‐based case‐control study of melanoma. Buccal DNAs were obtained from 1,207 people with incident multiple primary melanoma and 2,469 with incident single primary melanoma. SNPs with known or suspected impact on VDR activity, haplotype tagging SNPs with ≥10% minor allele frequency in Caucasians, and SNPs reported as significant in other association studies were examined. Logistic regression was used to calculate the relative risks conferred by the individual SNP. Eight of 38 SNPs in the promoter, coding, and 3′ gene regions were individually significantly associated with multiple primary melanoma after adjusting for covariates. The estimated increase in risk for individuals who were homozygous for the minor allele ranged from 25 to 33% for six polymorphisms: rs10875712 (odds ratios [OR] 1.28; 95% confidence interval (CI), 1.01–1.62), rs4760674 (OR 1.33; 95% CI, 1.06–1.67), rs7139166 (OR 1.26; 95%CI, 1.02–1.56), rs4516035 (OR 1.25; 95%CI, 1.01–1.55), rs11168287 (OR 1.27; 95%CI, 1.03–1.57) and rs1544410 (OR 1.30; 95%CI, 1.04–1.63); for two polymorphisms, homozygous carriers had a decreased risk: rs7305032 (OR 0.81; 95%CI 0.65–1.02) and rs7965281 (OR, 0.78; 95%CI, 0.62–0.99). We recognize the potential false positive findings because of multiple comparisons; however, the eight significant SNPs in our study outnumbered the two significant tests expected to occur by chance. The VDR may play a role in melanomagenesis.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherVDRen_US
dc.subject.otherSNPen_US
dc.subject.otherMelanomaen_US
dc.subject.otherPolymorphismen_US
dc.subject.otherVitamin Den_US
dc.titleVitamin D receptor polymorphisms in patients with cutaneous melanomaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Internal Medicine, Epidemiology, and Human Genetics, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherDepartment of Epidemiology and Biostatistics, Memorial Sloan‐Kettering Cancer Center, New York, NYen_US
dc.contributor.affiliationotherEpidemiology and Cancer Prevention, University of New Mexico, Albuquerque, NMen_US
dc.contributor.affiliationotherSydney School of Public Health, The University of Sydney, Sydney, NSW, Australiaen_US
dc.contributor.affiliationotherPopulation Studies and Surveillance, Cancer Care Ontario, Toronto, ON, Canadaen_US
dc.contributor.affiliationotherDepartments of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NCen_US
dc.contributor.affiliationotherDepartments of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NCen_US
dc.contributor.affiliationotherDepartment of Epidemiology, School of Medicine, University of California at Irvine, Irvine, CAen_US
dc.contributor.affiliationotherCentro per la Prevenzione Oncologica Torino, Torino, Piemonte, Italiaen_US
dc.contributor.affiliationotherBritish Columbia Cancer Agency, Vancouver, BC, Canadaen_US
dc.contributor.affiliationotherMenzies Centre for Population Health Research, University of Tasmania, Hobart, Tasmania, Australiaen_US
dc.contributor.affiliationotherCenter for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PAen_US
dc.contributor.affiliationotherDepartment of Pathology, Memorial Sloan‐Kettering Cancer Center, New York, NYen_US
dc.contributor.affiliationotherDepartment of Dermatopathology, Women's College Hospital, Toronto, ON, Canadaen_US
dc.contributor.affiliationotherMemorial Sloan‐Kettering Cancer Center, 1250 First Ave, Room S‐737, box 353, New York, NY 10065, USAen_US
dc.identifier.pmid21365644en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88076/1/26023_ftp.pdf
dc.identifier.doi10.1002/ijc.26023en_US
dc.identifier.sourceInternational Journal of Canceren_US
dc.identifier.citedreferenceColston K, Colston MJ, Feldman D. 1,25‐Dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology 1981; 108: 1083 – 6.en_US
dc.identifier.citedreferenceDanielsson C, Fehsel K, Polly P, Carlberg C. Differential apoptotic response of human melanoma cells to 1 alpha,25‐dihydroxyvitamin D3 and its analogues. Cell Death Differ 1998; 5: 946 – 52.en_US
dc.identifier.citedreferenceEvans SR, Houghton AM, Schumaker L, Brenner RV, Buras RR, Davoodi F, Nauta RJ, Shabahang M. Vitamin D receptor and growth inhibition by 1,25‐dihydroxyvitamin D3 in human malignant melanoma cell lines. J Surg Res 1996; 61: 127 – 33.en_US
dc.identifier.citedreferenceRanson M, Posen S, Mason RS. Human melanocytes as a target tissue for hormones: in vitro studies with 1 alpha‐25, dihydroxyvitamin D3, alpha‐melanocyte stimulating hormone, and beta‐estradiol. J Invest Dermatol 1988; 91: 593 – 8.en_US
dc.identifier.citedreferenceYudoh K, Matsuno H, Kimura T. 1alpha,25‐dihydroxyvitamin D3 inhibits in vitro invasiveness through the extracellular matrix and in vivo pulmonary metastasis of B16 mouse melanoma. J Lab Clin Med 1999; 133: 120 – 8.en_US
dc.identifier.citedreferenceBerwick M, Armstrong BK, Ben‐Porat L, Fine J, Kricker A, Eberle C, Barnhill R. Sun exposure and mortality from melanoma. J Natl Cancer Inst 2005; 97: 195 – 9.en_US
dc.identifier.citedreferenceMoan J, Porojnicu AC, Dahlback A, Setlow RB. Addressing the health benefits and risks, involving vitamin D or skin cancer, of increased sun exposure. Proc Natl Acad Sci USA 2008; 105: 668 – 73.en_US
dc.identifier.citedreferenceRosso S, Sera F, Segnan N, Zanetti R. Sun exposure prior to diagnosis is associated with improved survival in melanoma patients: results from a long‐term follow‐up study of Italian patients. Eur J Cancer 2008; 44: 1275 – 81.en_US
dc.identifier.citedreferenceNewton‐Bishop JA, Beswick S, Randerson‐Moor J, Chang YM, Affleck P, Elliott F, Chan M, Leake S, Karpavicius B, Haynes S, Kukalizch K, Whitaker L, et al. Serum 25‐hydroxyvitamin D3 levels are associated with breslow thickness at presentation and survival from melanoma. J Clin Oncol 2009; 27: 5439 – 44.en_US
dc.identifier.citedreferenceStumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF. Target cells for 1,25‐dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science 1979; 206: 1188 – 90.en_US
dc.identifier.citedreferenceUitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004; 338: 143 – 56.en_US
dc.identifier.citedreferenceNejentsev S, Godfrey L, Snook H, Rance H, Nutland S, Walker NM, Lam AC, Guja C, Ionescu‐Tirgoviste C, Undlien DE, Ronningen KS, Tuomilehto‐Wolf E, et al. Comparative high‐resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene. Hum Mol Genet 2004; 13: 1633 – 9.en_US
dc.identifier.citedreferenceFang Y, van Meurs JB, d'Alesio A, Jhamai M, Zhao H, Rivadeneira F, Hofman A, van Leeuwen JP, Jehan F, Pols HA, Uitterlinden AG. Promoter and 3′‐untranslated‐region haplotypes in the vitamin d receptor gene predispose to osteoporotic fracture: the Rotterdam study. Am J Hum Genet 2005; 77: 807 – 23.en_US
dc.identifier.citedreferenceHutchinson PE, Osborne JE, Lear JT, Smith AG, Bowers PW, Morris PN, Jones PW, York C, Strange RC, Fryer AA. Vitamin D receptor polymorphisms are associated with altered prognosis in patients with malignant melanoma. Clin Cancer Res 2000; 6: 498 – 504.en_US
dc.identifier.citedreferenceHalsall JA, Osborne JE, Potter L, Pringle JH, Hutchinson PE. A novel polymorphism in the 1A promoter region of the vitamin D receptor is associated with altered susceptibilty and prognosis in malignant melanoma. Br J Cancer 2004; 91: 765 – 70.en_US
dc.identifier.citedreferenceHan J, Colditz GA, Hunter DJ. Polymorphisms in the MTHFR and VDR genes and skin cancer risk. Carcinogenesis 2007; 28: 390 – 7.en_US
dc.identifier.citedreferenceLi C, Liu Z, Zhang Z, Strom SS, Gershenwald JE, Prieto VG, Lee JE, Ross MI, Mansfield PF, Cormier JN, Duvic M, Grimm EA, et al. Genetic variants of the vitamin D receptor gene alter risk of cutaneous melanoma. J Invest Dermatol 2007; 127: 276 – 80.en_US
dc.identifier.citedreferencePovey JE, Darakhshan F, Robertson K, Bisset Y, Mekky M, Rees J, Doherty V, Kavanagh G, Anderson N, Campbell H, MacKie RM, Melton DW. DNA repair gene polymorphisms and genetic predisposition to cutaneous melanoma. Carcinogenesis 2007; 28: 1087 – 93.en_US
dc.identifier.citedreferenceSantonocito C, Capizzi R, Concolino P, Lavieri MM, Paradisi A, Gentileschi S, Torti E, Rutella S, Rocchetti S, Di Carlo A, Di Stasio E, Ameglio F, et al. Association between cutaneous melanoma, Breslow thickness and vitamin D receptor BsmI polymorphism. Br J Dermatol 2007; 156: 277 – 82.en_US
dc.identifier.citedreferenceBarroso E, Fernandez LP, Milne RL, Pita G, Sendagorta E, Floristan U, Feito M, Aviles JA, Martin‐Gonzalez M, Arias JI, Zamora P, Blanco M, et al. Genetic analysis of the vitamin D receptor gene in two epithelial cancers: melanoma and breast cancer case‐control studies. BMC Cancer 2008; 8: 385.en_US
dc.identifier.citedreferenceLi C, Liu Z, Wang LE, Gershenwald JE, Lee JE, Prieto VG, Duvic M, Grimm EA, Wei Q. Haplotype and genotypes of the VDR gene and cutaneous melanoma risk in non‐Hispanic whites in Texas: a case‐control study. Int J Cancer 2008; 122: 2077 – 84.en_US
dc.identifier.citedreferenceGapska P, Scott RJ, Serrano‐Fernandez P, Mirecka A, Rassoud I, Gorski B, Cybulski C, Huzarski T, Byrski T, Nagay L, Maleszka R, Sulikowski M, et al. Vitamin D receptor variants and the malignant melanoma risk: a population‐based study. Cancer Epidemiol 2009; 33: 103 – 7.en_US
dc.identifier.citedreferenceRanderson‐Moor JA, Taylor JC, Elliott F, Chang YM, Beswick S, Kukalizch K, Affleck P, Leake S, Haynes S, Karpavicius B, Marsden J, Gerry E, et al. Vitamin D receptor gene polymorphisms, serum 25‐hydroxyvitamin D levels, and melanoma: UK case‐control comparisons and a meta‐analysis of published VDR data. Eur J Cancer 2009; 45: 3271 – 81.en_US
dc.identifier.citedreferenceArai H, Miyamoto KI, Yoshida M, Yamamoto H, Taketani Y, Morita K, Kubota M, Yoshida S, Ikeda M, Watabe F, Kanemasa Y, Takeda E. The polymorphism in the caudal‐related homeodomain protein Cdx‐2 binding element in the human vitamin D receptor gene. J Bone Miner Res 2001; 16: 1256 – 64.en_US
dc.identifier.citedreferenceJurutka PW, Remus LS, Whitfield GK, Thompson PD, Hsieh JC, Zitzer H, Tavakkoli P, Galligan MA, Dang HT, Haussler CA, Haussler MR. The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol 2000; 14: 401 – 20.en_US
dc.identifier.citedreferenceColin EM, Weel AE, Uitterlinden AG, Buurman CJ, Birkenhager JC, Pols HA, Van Leeuwen JP. Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1, 25‐dihydroxyvitamin D3. Clin Endocrinol (Oxf) 2000; 52: 211 – 6.en_US
dc.identifier.citedreferenceMocellin S, Nitti D. Vitamin D receptor polymorphisms and the risk of cutaneous melanoma: a systematic review and meta‐analysis. Cancer 2008; 113: 2398 – 407.en_US
dc.identifier.citedreferenceGandini S, Raimondi S, Gnagnarella P, Dore JF, Maisonneuve P, Testori A. Vitamin D and skin cancer: a meta‐analysis. Eur J Cancer 2009; 45: 634 – 41.en_US
dc.identifier.citedreferenceBegg CB, Hummer AJ, Mujumdar U, Armstrong BK, Kricker A, Marrett LD, Millikan RC, Gruber SB, Culver HA, Zanetti R, Gallagher RP, Dwyer T, et al. A design for cancer case‐control studies using only incident cases: experience with the GEM study of melanoma. Int J Epidemiol 2006; 35: 756 – 64.en_US
dc.identifier.citedreferenceBegg CB, Berwick M. A note on the estimation of relative risks of rare genetic susceptibility markers. Cancer Epidemiol Biomarkers Prev 1997; 6: 99 – 103.en_US
dc.identifier.citedreferenced'Alesio A, Garabedian M, Sabatier JP, Guaydier‐Souquieres G, Marcelli C, Lemacon A, Walrant‐Debray O, Jehan F. Two single‐nucleotide polymorphisms in the human vitamin D receptor promoter change protein‐DNA complex formation and are associated with height and vitamin D status in adolescent girls. Hum Mol Genet 2005; 14: 3539 – 48.en_US
dc.identifier.citedreferenceBegg CB, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, Millikan RC, Gruber SB, Anton‐Culver H, Zanetti R, Gallagher RP, Dwyer T, et al. Lifetime risk of melanoma in CDKN2A mutation carriers in a population‐based sample. J Natl Cancer Inst 2005; 97: 1507 – 15.en_US
dc.identifier.citedreferenceNakai K, Habano W, Fujita T, Schnackenberg J, Kawazoe K, Suwabe A, Itoh C. Highly multiplexed genotyping of coronary artery disease‐associated SNPs using MALDI‐TOF mass spectrometry. Hum Mutat 2002; 20: 133 – 8.en_US
dc.identifier.citedreferenceBennett CD, Campbell MN, Cook CJ, Eyre DJ, Nay LM, Nielsen DR, Rasmussen RP, Bernard PS. The LightTyper: high‐throughput genotyping using fluorescent melting curve analysis. Biotechniques 2003; 34: 1288 – 92.en_US
dc.identifier.citedreferenceRonaghi M, Uhlen M, Nyren P. A sequencing method based on real‐time pyrophosphate. Science 1998; 281: 363, 365.en_US
dc.identifier.citedreferenceCotignola J, Reva B, Mitra N, Ishill N, Chuai S, Patel A, Shah S, Vanderbeek G, Coit D, Busam K, Halpern A, Houghton A, Sander C, Berwick M, Orlow I. Matrix Metalloproteinase‐9 (MMP‐9) polymorphisms in patients with cutaneous malignant melanoma. BMC Med Genet. 2007; 8: 10.en_US
dc.identifier.citedreferenceAbramovich F, Benjamini Y. False discovery rate. In: Balakrishnan N, d. Encyclopedia of Statistical Sciences, Vol. 4. New Jersey: Wiley, 2006. 2240 – 3.en_US
dc.identifier.citedreferenceWilk MB, Gnanadesikan R. Probability plotting methods for the analysis of data. Biometrika 1968; 55: 1 – 17.en_US
dc.identifier.citedreferenceHiggins, JP, Thompson, SG, Deeks, JJ, Altman, DG. Measuring inconsistency in meta‐analyses. BMJ 2003; 327: 557 – 60.en_US
dc.identifier.citedreferenceBegg, CB, Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088 – 1101.en_US
dc.identifier.citedreferenceRhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, Fujita PA, Diekhans M, Smith KE, Rosenbloom KR, Raney BJ, Pohl A, Pheasant M, et al. The UCSC Genome Browser database: update 2010. Nucleic Acids Res 2010; 38: D613 – 9.en_US
dc.identifier.citedreferenceSelbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58 – 63.en_US
dc.identifier.citedreferenceBerwick M, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, Millikan RC, Gruber SB, Anton‐Culver H, Zanetti R, Gallagher RP, Dwyer T, et al. The prevalence of CDKN2A germ‐line mutations and relative risk for cutaneous malignant melanoma: an international population‐based study. Cancer Epidemiol Biomarkers Prev 2006; 15: 1520 – 5en_US
dc.identifier.citedreferenceMartin RJ, McKnight AJ, Patterson CC, Sadlier DM, Maxwell AP. A rare haplotype of the vitamin D receptor gene is protective against diabetic nephropathy. Nephrol Dial Transplant 2010; 25: 497 – 503.en_US
dc.identifier.citedreferenceHalsall JA, Osborne JE, Epstein MP, Pringle JH, Hutchinson PE. The unfavorable effect of the A allele of the vitamin D receptor promoter polymorphism A‐1012G has different mechanisms related to susceptibility and outcome of malignant melanoma. Dermatoendocrinol 2009; 1: 54 – 7.en_US
dc.identifier.citedreferenceMacgregor S, Hottenga JJ, Lind PA, Suchiman HE, Willemsen G, Slagboom PE, Montgomery GW, Martin NG, Visscher PM, Boomsma DI. Vitamin D receptor gene polymorphisms have negligible effect on human height. Twin Res Hum Genet 2008; 11: 488 – 94.en_US
dc.identifier.citedreferenceRengarajan J, Szabo SJ, Glimcher LH. Transcriptional regulation of Th1/Th2 polarization. Immunol Today 2000; 21: 479 – 83.en_US
dc.identifier.citedreferenceYamamoto H, Miyamoto K, Li B, Taketani Y, Kitano M, Inoue Y, Morita K, Pike JW, Takeda E. The caudal‐related homeodomain protein Cdx‐2 regulates vitamin D receptor gene expression in the small intestine. J Bone Miner Res 1999; 14: 240 – 7.en_US
dc.identifier.citedreferenceRozek LS, Lipkin SM, Fearon ER, Hanash S, Giordano TJ, Greenson JK, Kuick R, Misek DE, Taylor JM, Douglas JA, Rennert G, Gruber SB. CDX2 polymorphisms, RNA expression, and risk of colorectal cancer. Cancer Res 2005; 65: 5488 – 92.en_US
dc.identifier.citedreferenceSertznig P, Dunlop T, Seifert M, Tilgen W, Reichrath J. Cross‐talk between vitamin D receptor (VDR)‐ and peroxisome proliferator‐activated receptor (PPAR)‐signaling in melanoma cells. Anticancer Res 2009; 29: 3647 – 58.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.