Show simple item record

Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convection‐dominated flows

dc.contributor.authorFidkowski, Krzysztof J.en_US
dc.date.accessioned2011-12-05T18:34:10Z
dc.date.available2013-02-01T20:26:18Zen_US
dc.date.issued2011-12-23en_US
dc.identifier.citationFidkowski, Krzysztof J. (2011). "Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convection‐dominated flows." International Journal for Numerical Methods in Engineering 88(12): 1297-1322. <http://hdl.handle.net/2027.42/88080>en_US
dc.identifier.issn0029-5981en_US
dc.identifier.issn1097-0207en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88080
dc.description.abstractWe study practical strategies for estimating numerical errors in scalar outputs calculated from unsteady simulations of convection‐dominated flows, including those governed by the compressible Navier–Stokes equations. The discretization is a discontinuous Galerkin finite element method in space and time on static spatial meshes. Time‐integral quantities are considered for scalar outputs and these are shown to superconverge with temporal refinement. Output error estimates are calculated using the adjoint‐weighted residual method, where the unsteady adjoint solution is obtained using a discrete approach with an iterative solver. We investigate the accuracy versus computational cost trade‐off for various approximations of the fine‐space adjoint and find that exact adjoint solutions are accurate but expensive. To reduce the cost, we propose a local temporal reconstruction that takes advantage of superconvergence properties at Radau points, and a spatial reconstruction based on nearest‐neighbor elements. This inexact adjoint yields output error estimates at a computational cost of less than 2.5 times that of the forward problem for the cases tested. The calculated error estimates account for numerical error arising from both the spatial and temporal discretizations, and we present a method for identifying the percentage contributions of each discretization to the output error. Copyright © 2011 John Wiley & Sons, Ltd.en_US
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.subject.otherVerificationen_US
dc.subject.otherDiscontinuous Galerkinen_US
dc.subject.otherNavier–Stokesen_US
dc.subject.otherUnsteady Adjointen_US
dc.subject.otherOutput Erroren_US
dc.titleOutput error estimation strategies for discontinuous Galerkin discretizations of unsteady convection‐dominated flowsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, 1320 Beal Avenue 3029 FXB, Ann Arbor, MI 48109, U.S.A.en_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, 1320 Beal Avenue 3029 FXB, Ann Arbor, MI 48109, U.S.A.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88080/1/3224_ftp.pdf
dc.identifier.doi10.1002/nme.3224en_US
dc.identifier.sourceInternational Journal for Numerical Methods in Engineeringen_US
dc.identifier.citedreferencePierce NA, Giles MB, Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Review 2000; 42 ( 2 ): 247 – 264.en_US
dc.identifier.citedreferenceBecker R, Rannacher R, An optimal control approach to a posteriori error estimation in finite element methods. In Acta Numerica, Iserles A (ed.). Cambridge University Press: Cambridge, 2001; 1 – 102.en_US
dc.identifier.citedreferenceHartmann R, Houston P, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Journal of Computational Physics 2002; 183 ( 2 ): 508 – 532.en_US
dc.identifier.citedreferenceVenditti DA, Darmofal DL, Anisotropic grid adaptation for functional outputs: application to two‐dimensional viscous flows. Journal of Computational Physics 2003; 187 ( 1 ): 22 – 46.en_US
dc.identifier.citedreferenceSen S, Veroy K, Huynh D, Deparis S, Nguyen N, Patera A, ‘Natural norm’ a posteriori error estimators for reduced basis approximations. Journal of Computational Physics 2006; 217: 37 – 62.en_US
dc.identifier.citedreferenceFidkowski KJ, Darmofal DL, Review of output‐based error estimation and mesh adaptation in computational fluid dynamics. American Institute of Aeronautics and Astronautics Journal 2011; 49 ( 4 ): 673 – 694.en_US
dc.identifier.citedreferenceMani K, Mavriplis DJ, Discrete adjoint based time‐step adaptation and error reduction in unsteady flow problems. AIAA Paper 2007‐3944, 2007.en_US
dc.identifier.citedreferenceMani K, Mavriplis DJ, Error estimation and adaptation for functional outputs in time‐dependent flow problems. Journal of Computational Physics 2010; 229: 415 – 440.en_US
dc.identifier.citedreferenceBarth TJ, Space–time error representation and estimation in Navier–Stokes calculations. In Complex Effects in Large Eddy Simulations, Kassinos SC, Langer CA, Laccarino G, Moin P (eds). Lecture Notes in Computational Science and Engineering, vol. 26. Springer: Berlin, Heidelberg, 2007; 29 – 48.en_US
dc.identifier.citedreferenceMeidner D, Vexler B, Adaptive space–time finite element methods for parabolic optimization problems. SIAM Journal on Control Optimization 2007; 46 ( 1 ): 116 – 142.en_US
dc.identifier.citedreferenceSchmich M, Vexler B, Adaptivity with dynamic meshes for space–time finite element discretizations of parabolic equations. SIAM Journal on Scientific Computing 2008; 30 ( 1 ): 369 – 393.en_US
dc.identifier.citedreferenceReed W, Hill T, Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Technical Report LA‐UR‐73‐479, 1973.en_US
dc.identifier.citedreferenceBassi F, Rebay S, High‐order accurate discontinuous finite element solution of the 2‐D Euler equations. Journal of Computational Physics 1997; 138: 251 – 285.en_US
dc.identifier.citedreferenceCockburn B, Shu CW, Runge–Kutta discontinuous Galerkin methods for convection‐dominated problems. Journal of Scientific Computing 2001; 16 ( 3 ): 173 – 261.en_US
dc.identifier.citedreferenceHouston P, Hartmann R, Süli E, Adaptive discontinuous Galerkin finite element methods for compressible fluid flows. In Numerical Methods for Fluid Dynamics VII, Baines M (ed.). ICFD, 2001; 347 – 353.en_US
dc.identifier.citedreferenceBrezzi F, Marini L, Süli E, Discontinuous Galerkin methods for first‐order hyperbolic problems. Mathematical Models and Methods in Applied Sciences 2004; 14: 1893 – 1903.en_US
dc.identifier.citedreferenceFidkowski KJ, Oliver TA, Lu J, Darmofal DL, p ‐Multigrid solution of high‐order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. Journal of Computational Physics 2005; 207: 92 – 113.en_US
dc.identifier.citedreferenceJohnson C, Szepessy A, Hansbo P, Discontinuous Galerkin methods for ordinary differential equations. Mathematics of Computation 1981; 36 ( 154 ): 455 – 473.en_US
dc.identifier.citedreferenceEriksson K, Johnson C, Thomee V, Adaptive finite element methods for parabolic problems I: a linear model problem. Mathematical Modelling and Numerical Analysis 1985; 19 ( 4 ): 611 – 643.en_US
dc.identifier.citedreferenceEriksson K, Johnson C, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM Journal on Numerical Analysis 1991; 28 ( 1 ): 43 – 77.en_US
dc.identifier.citedreferenceLiu W, Ma H, Tang T, Yan N, A posteriori error estimates for discontinuous Galerkin time‐stepping method for optimal control problems governed by parabolic equations. SIAM Journal on Numerical Analysis 2004; 42 ( 3 ): 1032 – 1061.en_US
dc.identifier.citedreferenceBar‐Yoseph P, Elata D, An efficient L2 Galerkin finite element method for multi‐dimensional non‐linear hyperbolic systems. International Journal for Numerical Methods in Engineering 1990; 29: 1229 – 1245.en_US
dc.identifier.citedreferenceLowrie RB, Roe PL, van Leer B, Properties of space–time discontinuous Galerkin. Los Alamos Technical Report LA‐UR‐98‐5561, 1998.en_US
dc.identifier.citedreferencevan der Ven H, van der Vegt J, Space–time discontinuous Galerkin fintie element method with dynamic grid motion for inviscid compressible flows II. Efficient flux quadrature. Computer Methods in Applied Mechanical Engineering 2002; 191: 4747 – 4780.en_US
dc.identifier.citedreferenceKlaij C, van der Vegt J, van der Ven H, Space–time discontinuous Galerkin method for the compressible Navier–Stokes equations. Journal of Computational Physics 2006; 217: 589 – 611.en_US
dc.identifier.citedreferenceRichter T, Discontinuous Galerkin as time‐stepping scheme for the Navier–Stokes equations. Fourth International Conference on High Performance Scientific Computing Modeling, Simulation and Optimization of Complex Processes, Hanoi, Vietnam, 2009.en_US
dc.identifier.citedreferenceBassi F, Rebay S, GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations. In Discontinuous Galerkin Methods: Theory, Computation and Applications, Cockburn B, Karniadakis G, Shu C‐W (eds). Springer: Berlin, 2000; 197 – 208.en_US
dc.identifier.citedreferenceRoe PL, Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics 1981; 43: 357 – 372.en_US
dc.identifier.citedreferenceArnold DN, Brezzi F, Cockburn B, Marini LD, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis 2002; 39 ( 5 ): 1749 – 1779.en_US
dc.identifier.citedreferenceLu J, An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2005.en_US
dc.identifier.citedreferenceBarth T, Larson M, A posteriori error estimates for higher order Godunov finite volume methods on unstructured meshes. In Finite Volumes for Complex Applications III, Herban R, Kröner D (eds). Hermes Penton: London, 2002; 41 – 63.en_US
dc.identifier.citedreferenceGiles MB, Süli E, Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 2002; 11: 145 – 236.en_US
dc.identifier.citedreferenceHarriman K, Houston P, Senior B, Süli E, hp‐version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. Technical Report NA 02/21, Oxford University Computing Lab Numerical Analysis Group, 2002.en_US
dc.identifier.citedreferenceHartmann R, Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM Journal on Numerical Analysis 2007; 45 ( 6 ): 2671 – 2696.en_US
dc.identifier.citedreferenceOliver TA, Darmofal DL, Impact of turbulence model irregularity on high‐order discretizations. AIAA Paper 2009‐953, 2009.en_US
dc.identifier.citedreferenceHoffman J, Johnson C, Adaptive finite element methods for incompressible fluid flow. In Error Estimation and Adaptive Discretization Methods for Computational Fluid Dynamics, Barth T, Deconinck H (eds). Lecture Notes in Computational Science and Engineering, vol. 25. Springer: Heidelberg, 2003; 97 – 157.en_US
dc.identifier.citedreferenceGiles M, Pierce N, Adjoint error correction for integral outputs. In Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol. 25. Springer: Berlin, 2002.en_US
dc.identifier.citedreferenceAdjerid S, Devine KD, Flaherty J, Krivodonova L, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Computer Methods in Applied Mechanical Engineering 2002; 191: 1097 – 1112.en_US
dc.identifier.citedreferenceFidkowski KJ, A simplex cut‐cell adaptive method for high‐order discretizations of the compressible Navier–Stokes equations. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2007.en_US
dc.identifier.citedreferenceRannacher R, Adaptive Galerkin finite element methods for partial differential equations. Journal of Computational and Applied Mathematics 2001; 128: 205 – 233.en_US
dc.identifier.citedreferenceVenditti DA, Darmofal DL, Grid adaptation for functional outputs: application to two‐dimensional inviscid flows. Journal of Computational Physics 2002; 176 ( 1 ): 40 – 69.en_US
dc.identifier.citedreferenceSolín P, Demkowicz L, Goal‐oriented hp‐adaptivity for elliptic problems. Computer Methods in Applied Mechanics and Engineering 2004; 193: 449 – 468.en_US
dc.identifier.citedreferenceHuynh H, Collocation and Galerkin time‐stepping methods. AIAA Paper 2009‐4323, 2009.en_US
dc.identifier.citedreferenceCockburn B, Luskin M, Shu CW, Süli E, Enhanced accuracy by post‐processing for finite element methods for hyperbolic equations. Mathematics of Computation 2002; 72 ( 242 ): 577 – 606.en_US
dc.identifier.citedreferenceFidkowski KJ, A high‐order discontinuous Galerkin multigrid solver for aerodynamic applications. M.S. Thesis, M.I.T., Department of Aeronautics and Astronautics, June 2004.en_US
dc.identifier.citedreferenceGriewank A, Walther A, Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software 2000; 26 ( 1 ): 19 – 45.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.