Show simple item record

Artificial feeding synchronizes behavioral, hormonal, metabolic and neural parameters in mother‐deprived neonatal rabbit pups

dc.contributor.authorMorgado, Elviraen_US
dc.contributor.authorJuárez, Claudiaen_US
dc.contributor.authorMelo, Angel I.en_US
dc.contributor.authorDomínguez, Belisarioen_US
dc.contributor.authorLehman, Michael N.en_US
dc.contributor.authorEscobar, Carolinaen_US
dc.contributor.authorMeza, Enriqueen_US
dc.contributor.authorCaba, Marioen_US
dc.date.accessioned2011-12-05T18:34:32Z
dc.date.available2013-02-01T20:26:19Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationMorgado, Elvira; Juárez, Claudia ; Melo, Angel I.; Domínguez, Belisario ; Lehman, Michael N.; Escobar, Carolina; Meza, Enrique; Caba, Mario (2011). "Artificial feeding synchronizes behavioral, hormonal, metabolic and neural parameters in motherâ deprived neonatal rabbit pups." European Journal of Neuroscience 34(11). <http://hdl.handle.net/2027.42/88087>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88087
dc.description.abstractNursing in the rabbit is under circadian control, and pups have a daily anticipatory behavioral arousal synchronized to this unique event, but it is not known which signal is the main entraining cue. In the present study, we hypothesized that food is the main entraining signal. Using mother‐deprived pups, we tested the effects of artificial feeding on the synchronization of locomotor behavior, plasma glucose, corticosterone, c‐Fos (FOS) and PERIOD1 (PER1) rhythms in suprachiasmatic, supraoptic, paraventricular and tuberomammillary nuclei. At postnatal day 1, an intragastric tube was placed by gastrostomy. The next day and for the rest of the experiment, pups were fed with a milk formula through the cannula at either 02:00 h or 10:00 h [feeding time = zeitgeber time (ZT)0]. At postnatal days 5–7, pups exhibited behavioral arousal, with a significant increase in locomotor behavior 60 min before feeding. Glucose levels increased after feeding, peaking at ZT4–ZT12 and then declining. Corticosterone levels were highest around the time of feeding, and then decreased to trough concentrations at ZT12–ZT16, increasing again in anticipation of the next feeding bout. In the brain, the suprachiasmatic nucleus had a rhythm of FOS and PER1 that was not significantly affected by the feeding schedule. Conversely, the supraoptic, paraventricular and tuberomammillary nuclei had rhythms of both FOS and PER1 induced by the time of scheduled feeding. We conclude that the nursing rabbit pup is a natural model of food entrainment, as food, in this case milk formula, is a strong synchronizing signal for behavioral, hormonal, metabolic and neural parameters. Nursing in the rabbit is under circadian control, and pups have a daily anticipatory behavioral arousal synchronized to this unique event, but it is not known which signal is the main entraining cue. In the present study, we hypothesized that food is the main entraining signal.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAnticipatory Arousalen_US
dc.subject.otherClock Genesen_US
dc.subject.otherCorticosteroneen_US
dc.subject.otherFOSen_US
dc.subject.otherSynchronization by Fooden_US
dc.titleArtificial feeding synchronizes behavioral, hormonal, metabolic and neural parameters in mother‐deprived neonatal rabbit pupsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular & Integrative Physiology, and Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherCentro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver., Méxicoen_US
dc.contributor.affiliationotherCIRA, CINVESTAV‐UAT, Tlaxcala, Tlax., Méxicoen_US
dc.contributor.affiliationotherFacultad Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz Ver., Méxicoen_US
dc.contributor.affiliationotherDepartamento de Anatomía, Facultad de Medicina, UNAM, México D.F., Méxicoen_US
dc.identifier.pmid22098455en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88087/1/j.1460-9568.2011.07898.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2011.07898.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAbe, M., Herzog, E.D., Yamazaki, S., Straume, M., Tei, H., Sakaki, Y., Menaker, M. & Block, G.D. ( 2002 ) Circadian rhythms in isolated brain regions. J. Neurosci., 22, 350 – 356.en_US
dc.identifier.citedreferenceAcosta‐Galvan, G., Yi, C.X., van der Vliet, J., Jhamandas, J.H., Panula, P., Angeles‐Castellanos, M., Basualdo, M.d.C., Escobar, C. & Buijs, R.M. ( 2011 ) Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc. Natl. Acad. Sci. USA, 108, 5813 – 5818.en_US
dc.identifier.citedreferenceAllingham, K., von Salderm, C., Brennan, P.A., Distel, H. & Hudson, R. ( 1998 ) Endogenous expression of c‐Fos in hypothalamic nuclei of neonatal rabbits coincides with their circadian pattern of suckling‐associated arousal. Brain Res., 783, 210 – 218.en_US
dc.identifier.citedreferenceAngeles‐Castellanos, M., Aguilar‐Roblero, R. & Escobar, C. ( 2003 ) c‐Fos expression in hypothalamic nuclei of food‐entrained rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 286, R158 – R165.en_US
dc.identifier.citedreferenceAntle, M.C. & Silver, R. ( 2009 ) Neural basis of timing and anticipatory behaviors. Eur. J. Neurosci., 30, 1643 – 1649.en_US
dc.identifier.citedreferenceBeierle, E.A., Chen, M.K., Hartwich, J.E., Iyengar, M., Dai, W., Li, N., Demarco, V. & Neu, J. ( 2004 ) Artificial rearing of mouse pups: development of a mouse pup in a cup model. Pediatr. Res., 56, 250 – 255.en_US
dc.identifier.citedreferenceBrecchia, G., Bonanno, A., Dall’Aglio, C., Mercati, F., Zerani, M., DiGrigoli, A. & Boiti, C. ( 2009 ) Neuroendocrine responses in neonatal mother‐deprived rabbits. Brain Res., 1304, 105 – 112.en_US
dc.identifier.citedreferenceBroekhuizen, S. & Mulder, J.L. ( 1983 ) Differences and similarities in nursing behaviour of hares and rabbits. Acta Zool. Fenn., 174, 61 – 63.en_US
dc.identifier.citedreferenceBrummelte, S., Schmidt, K.L., Taves, M.D., Soma, K.K. & Galea, L.A. ( 2010 ) Elevated corticosterone levels in stomach milk, serum, and brain of male and female offspring after maternal corticosterone treatment in the rat. Dev. Neurobiol., 70, 714 – 725.en_US
dc.identifier.citedreferenceCaba, M. & González‐Mariscal, G. ( 2009 ) The rabbit pup, a natural model of nursing anticipatory activity. Eur. J. Neurosci., 30, 1697 – 1706.en_US
dc.identifier.citedreferenceCaba, M., Rovirosa, M.J. & Silver, R. ( 2003 ) Suckling and genital stroking induces Fos expresion in hypothalamic oxytocinergic neurons of rabbit pups. Brain Res. Dev. Brain Res., 143, 119 – 128.en_US
dc.identifier.citedreferenceCaba, M., Tovar, A., Silver, R., Morgado, E., Meza, E., Zavaleta, Y. & Juárez, C. ( 2008 ) Nature’s food anticipatory experiment: entrainment of locomotor behavior, suprachiasmatic and dorsomedial hypothalamic nuclei by suckling in rabbit pups. Eur. J. Neurosci., 27, 432 – 443.en_US
dc.identifier.citedreferenceCaldelas, I., González, B., Montúfar‐Chaveznava, R. & Hudson, R. ( 2009 ) Endogenous clock gene expression in the suprachiasmatic nuclei of previsual newborn rabbits is entrained by nursing. Dev. Neurobiol., 69, 47 – 59.en_US
dc.identifier.citedreferenceCatalani, A., Marinelli, M., Scaccianoce, S., Nicolai, R., Muscolo, L.A., Porcu, A., Korányi, L., Piazza, P.V. & Angelucci, L. ( 1993 ) Progeny of mothers drinking corticosterone during lactation has lower stress‐induced corticosterone secretion and better cognitive performance. Brain Res., 624, 209 – 215.en_US
dc.identifier.citedreferenceChatterjee, D., Chatterjee‐Chakraborty, M., Rees, S., Cauchi, J., de Medeiros, C.B. & Fleming, A.S. ( 2007 ) Maternal isolation alters the expression of neural proteins during development: ‘stroking’ stimulation reverses these effects. Brain Res., 1158, 11 – 27.en_US
dc.identifier.citedreferenceConover, W.J. & Iman, R.L. ( 1981 ) Rank transformation as a bridge between parametric and nonparametric statistics. Am. Stat., 35, 132 – 133.en_US
dc.identifier.citedreferenceDamiola, F., Minh, N.L., Preitner, N., Kornmann, B., Fleury‐Olela, F. & Schibler, U. ( 2000 ) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev., 14, 2950 – 2961.en_US
dc.identifier.citedreferenceDíaz‐Muñoz, M., Vázquez‐Martínez, O., Aguilar‐Roblero, R. & Escobar, C. ( 2000 ) Anticipatory changes in liver metabolism and entrainment of insulin, glucagon and corticosterone in food‐restricted rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 279, 2048 – 2056.en_US
dc.identifier.citedreferenceFlanagan, L.M., Olson, B.R., Sved, A.F., Verbalis, J.G. & Stricker, E.M. ( 1992 ) Gastric motility in conscious rats given oxytocin and an oxytocin antagonist centrally. Brain Res., 578, 256 – 260.en_US
dc.identifier.citedreferenceGerhard, L. ( 1968 ) Atlas of the Mes‐ and Diencephalon of the Rabbit. Springer‐Verlag, Berlín.en_US
dc.identifier.citedreferenceGirgis, M. & Shih‐Chang, W. ( 1981 ) A New Stereotaxic Atlas of the Rabbit Brain. W. H. Green, St Louis.en_US
dc.identifier.citedreferenceGranados‐Fuentes, D., Tseng, A. & Herzog, E.D. ( 2006 ) A circadian clock in the olfactory bulb controls olfactory responsivity. J. Neurosci., 26, 12219 – 12225.en_US
dc.identifier.citedreferenceGrosvenor, C.E., Picciano, M.F. & Baumrucker, C.R. ( 1993 ) Hormones and growth factors in milk. Endocr. Rev., 14, 710 – 728.en_US
dc.identifier.citedreferenceHara, R., Wan, K., Wakamatsu, H., Aida, R., Moriya, T., Akiyama, M. & Shibata, S. ( 2001 ) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells, 6, 269 – 278.en_US
dc.identifier.citedreferenceHernández‐Campos, O., Montúfar‐Chaveznava, R. & Caldelas, I.. ( 2011 ). Do newborn rabbits bearing suprachiasmatic nuclei lesions anticipate to nursing? 3rd World Congress of Chronobiology. Puebla, México.en_US
dc.identifier.citedreferenceHonma, K., Noe, Y., Honma, S., Katsuno, Y. & Hiroshighe, T. ( 1992 ) Roles of paraventricular catecholamines in feeding‐associated corticosterone rhythm in rats. Am. J. Physiol., 25, E948 – E965.en_US
dc.identifier.citedreferenceHudson, R. & Distel, H. ( 1989 ) Temporal pattern of suckling in rabbit pups: a model of circadian synchrony between mother and young. In Reppert, S.M. (Ed.), Development of Circadian Rhythmicity and Photoperiodism in Mammals. Perinatology Press, Ithaca, NY, pp. 83 – 102.en_US
dc.identifier.citedreferenceInzunza, O., Serón‐Ferré, M.J., Bravo, H. & Torrealba, F. ( 2000 ) Tuberoammillary nucleus activation anticipates feeding under a restricted schedule in rats. Neurosci. Lett., 293, 139 – 142.en_US
dc.identifier.citedreferenceJilge, B. ( 1993 ) The ontogeny of circadian rhythms in the rabbit. J. Biol. Rhythms, 8, 247 – 260.en_US
dc.identifier.citedreferenceJilge, B. ( 1995 ) Ontogeny of the rabbit’s rhythms without an external zeitgeber. Physiol. Behav., 58, 131 – 140.en_US
dc.identifier.citedreferenceJilge, B., Kuhnt, B., Landerer, W. & Rest, S. ( 2000 ) Circadian thermoregulation in suckling rabbit pups. J. Biol. Rhythms, 15, 329 – 335.en_US
dc.identifier.citedreferenceKrieger, D. ( 1974 ) Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology, 95, 1195 – 1201.en_US
dc.identifier.citedreferenceKriegsfeld, L.J. & Silver, R. ( 2006 ) The regulation of neuroendocrine function: timing is everything. Horm. Behav., 49, 557 – 574.en_US
dc.identifier.citedreferenceKriegsfeld, L.J., Korets, R. & Silver, R. ( 2003 ) Expression of the circadian clock gene Period1 in neuroendocrine cells: an investigation using mice with a Per1::GFP transgene. Eur. J. Neurosci., 17, 212 – 220.en_US
dc.identifier.citedreferenceLadd, C.O., Huot, R.L., Thrivikraman, K.V., Nemeroff, C.B. & Plotsky, P.M. ( 2004 ) Long term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo‐pituitary‐adrenal axis following neonatal maternal separation. Biol. Psychiatry, 55, 367 – 375.en_US
dc.identifier.citedreferenceMelo, A.I., Hernández‐Curiel, M. & Hoffman, K.L. ( 2009 ) Maternal and peer contact during the postnatal period participate in the normal development of maternal aggression, maternal behavior, and the behavioral response to novelty. Behav. Brain Res., 201, 14 – 21.en_US
dc.identifier.citedreferenceMesser, M., Thoman, E.B., Galofre, A., Dallman, T. & Dallman, P.R. ( 1969 ) Artificial feeding of infant rats by continuous infusion. J. Nutr., 98, 404 – 410.en_US
dc.identifier.citedreferenceMeza, E., Juárez, C., Morgado, E., Zavaleta, Y. & Caba, M. ( 2008 ) Brief daily suckling shifts locomotor behavior and induces PER1 protein in paraventricular and supraoptic nuclei, but not in the suprachiasmatic nucleus, of rabbit does. Eur. J. Neurosci., 28, 1394 – 1403.en_US
dc.identifier.citedreferenceMeza, E., Waliszewski, S.M. & Caba, M. ( 2011 ) Circadian nursing induces PER1 protein in neuroendocrine tyrosine hydroxylase neurons in the rabbit doe. J. Neuroendocrinol., 23, 472 – 480.en_US
dc.identifier.citedreferenceMistlberger, R.E. ( 1994 ) Circadian food‐anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev., 18, 171 – 195.en_US
dc.identifier.citedreferenceMoberg, G.P., Bellinger, L.L. & Mendel, V.E. ( 1975 ) Effect of meal feeding on daily rhythms of plasma corticosterone and growth hormone in the rat. Neuroendocrinology, 19, 160 – 169.en_US
dc.identifier.citedreferenceMorgado, E., Gordon, M.K., Minana‐Solis, M.d.C., Meza, E., Levine, S., Escobar, C. & Caba, M. ( 2008 ) Hormonal and metabolic rhythms associated with the daily scheduled nursing in rabbit pups. Am. J. Physiol. Regul. Integr. Comp. Physiol., 295, R690 – R695.en_US
dc.identifier.citedreferenceMorgado, E., Meza, E., Gordon, M.K., Pau, K.Y., Juárez, C. & Caba, M. ( 2010 ) Persistence of hormonal and metabolic rhythms during fasting in 7‐to 9‐day‐old rabbits entrained by nursing during night. Horm. Behav., 58, 465 – 472.en_US
dc.identifier.citedreferenceOlszewski, P.K., Klockars, A., Schiöth, H.B. & Levine, A.S. ( 2010 ) Oxytocin as feeding inhibitor: maintaining homeostasis in consumatory behavior. Pharmacol. Biochem. Behav., 97, 47 – 54.en_US
dc.identifier.citedreferencePongrácz, P. & Altbäcker, V. ( 2003 ) Arousal, but not nursing, is necessary to elicit a decreased fear reaction toward humans in rabbit pups. Dev. Psychobiol., 43, 192 – 199.en_US
dc.identifier.citedreferenceRenaud, L.P., Tang, M., McCann, M.J., Stricker, E.M. & Verbalis, J.G. ( 1987 ) Cholecystokinin and gastric distension activate oxytocinergic cells in rat hypothalamus. Am. J. Physiol., 253, R661 – R665.en_US
dc.identifier.citedreferenceRovirosa, M.J., Levine, S., Gordon, M.K. & Caba, M. ( 2005 ) Circadian rhythm of corticosterone secretion in the neonatal rabbit. Brain Res. Dev. Brain Res., 8, 92 – 96.en_US
dc.identifier.citedreferenceRowe, S.A. & Kennaway, D.J. ( 2002 ) Melatonin in rat milk and the likelihood of its role in postnatal maternal entrainment of rhythms. Am. J. Physiol. Regul. Integr. Comp. Physiol., 282, R797 – R804.en_US
dc.identifier.citedreferenceSchuh, D., Hoy, S. & Selzer, D.. ( 2004 ) Vocalization of rabbit pups in the mother–young relationship. Proceedings of 8th World Rabbit Congress, Puebla, México, pp. 1266 – 1270.en_US
dc.identifier.citedreferenceStephan, F.K. ( 2002 ) The ‘other’ circadian system: food as a zeitgeber. J. Biol. Rhythms, 17, 284 – 292.en_US
dc.identifier.citedreferenceStephan, F.K., Swann, J.M. & Sisk, C.L. ( 1979 ) Anticipation of 24 hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav. Neural Biol., 25, 345 – 363.en_US
dc.identifier.citedreferenceSuckow, M.A. & Douglas, F.A. ( 1997 ) The Laboratory Rabbit, 2nd edn. CRC Press, Boca Raton, Florida.en_US
dc.identifier.citedreferenceSzeto, A., Gonzales, J.A., Spitzer, S.B., Levine, J.E., Zaias, P.G., Saab, N., Schneiderman, N. & McCabe, P.M. ( 2004 ) Circulating levels of glucocorticoid hormones in WHHL and NZW rabbits: circadian cycle and response to repeated social encounter. Psychoneuroendocrinology, 29, 861 – 866.en_US
dc.identifier.citedreferenceValdés, J.L., Farías, P., Ocampo‐Garcés, A., Cortés, N., Serón‐Ferré, M. & Torrealba, F. ( 2005 ) Arousal and differential Fos expression in histaminergic neurons of the ascending arousal system during a feeding‐related motivated behaviour. Eur. J. Neurosci., 21, 1931 – 1942.en_US
dc.identifier.citedreferenceVerbalis, J.G., Blackburn, R.E., Hoffman, G.E. & Stricker, E.M. ( 1995 ) Establishing behavioral and physiological functions of central oxytocin: insights from studies of oxytocin and ingestive behaviors. Adv. Exp. Med. Biol., 395, 209 – 225.en_US
dc.identifier.citedreferenceVerwey, M. & Amir, S. ( 2009 ) Food‐entrainable circadian oscillators in the brain. Eur. J. Neurosci., 30, 1650 – 1657.en_US
dc.identifier.citedreferenceWakamatsu, H., Yoshinobu, Y., Aida, R., Moriya, T., Akiyama, M. & Shibata, S. ( 2001 ) Restricted‐feeding‐induced anticipatory activity rhythm is associated with a phase‐shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci., 13, 1190 – 1196.en_US
dc.identifier.citedreferenceWithworth, N.S. & Grosvenor, C.E. ( 1978 ) Transfer of milk prolactin to the plasma of neonatal rats by intestinal absorption. J. Endocrinol., 79, 191 – 199.en_US
dc.identifier.citedreferenceZarrow, M.X., Denenberg, V.H. & Anderson, C. ( 1965 ) Rabbit: frequency of suckling in the pup. Science, 150, 1835 – 1836.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.