Show simple item record

Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells

dc.contributor.authorKryczek, Ilonaen_US
dc.contributor.authorLiu, Sulingen_US
dc.contributor.authorRoh, Michael H.en_US
dc.contributor.authorVatan, Linhuaen_US
dc.contributor.authorSzeliga, Wojciechen_US
dc.contributor.authorWei, Shuangen_US
dc.contributor.authorBanerjee, Mousumien_US
dc.contributor.authorMao, Yujunen_US
dc.contributor.authorKotarski, Janen_US
dc.contributor.authorWicha, Max S.en_US
dc.contributor.authorLiu, Rebeccaen_US
dc.contributor.authorZou, Weipingen_US
dc.date.accessioned2011-12-05T18:34:59Z
dc.date.available2013-03-04T15:29:55Zen_US
dc.date.issued2012-01-01en_US
dc.identifier.citationKryczek, Ilona; Liu, Suling; Roh, Michael; Vatan, Linhua; Szeliga, Wojciech; Wei, Shuang; Banerjee, Mousumi; Mao, Yujun; Kotarski, Jan; Wicha, Max S.; Liu, Rebecca; Zou, Weiping (2012). "Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells." International Journal of Cancer 130(1): 29-39. <http://hdl.handle.net/2027.42/88104>en_US
dc.identifier.issn0020-7136en_US
dc.identifier.issn1097-0215en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88104
dc.description.abstractIdentification of cancer stem cells is crucial for advancing cancer biology and therapy. Several markers including CD24, CD44, CD117, CD133, the G subfamily of ATP‐binding cassette transporters (ABCG), epithelial specific antigen (ESA) and aldehyde dehydrogenase (ALDH) are used to identify and investigate human epithelial cancer stem cells in the literature. We have now systemically analyzed and compared the expression of these markers in fresh ovarian epithelial carcinomas. Although the expression levels of these markers were unexpectedly variable and partially overlapping in fresh ovarian cancer cells from different donors, we reliably detected important levels of CD133 and ALDH in the majority of fresh ovarian cancer. Furthermore, most of these stem cell markers including CD133 and ALDH were gradually lost following in vitro passage of primary tumor cells. However, the expression of ALDH and CD133, but not CD24, CD44 and CD117, could be partially rescued by the in vitro serum‐free and sphere cultures and by the in vivo passage in the immune‐deficient xenografts. ALDH + and CD133 + cells formed three‐dimensional spheres more efficiently than their negative counterparts. These sphere‐forming cells expressed high levels of stem cell core gene transcripts and could be expanded and form additional spheres in long‐term culture. ALDH + , CD133 + and ALDH + CD133 + cells from fresh tumors developed larger tumors more rapidly than their negative counterparts. This property was preserved in the xenografted tumors. Altogether, the data suggest that ALDH + and CD133 + cells are enriched with ovarian cancer‐initiating (stem) cells and that ALDH and CD133 may be widely used as reliable markers to investigate ovarian cancer stem cell biology.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherStem Cellen_US
dc.subject.otherOvarian Canceren_US
dc.subject.otherApoptosis Resistanceen_US
dc.subject.otherALDHen_US
dc.subject.otherCD133en_US
dc.subject.otherTumorigenesisen_US
dc.titleExpression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Surgery, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumUniversity of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Biostatistics, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumMSRB II C560B, 1150 W. Medical Center Dr., University of Michigan School of Medicine, Ann Arbor, MI 48109‐0669, USAen_US
dc.contributor.affiliationotherDepartment of Gynecology, University School of Medicine, Lublin, Polanden_US
dc.identifier.pmid21480217en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88104/1/25967_ftp.pdf
dc.identifier.doi10.1002/ijc.25967en_US
dc.identifier.sourceInternational Journal of Canceren_US
dc.identifier.citedreferenceZou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263 – 74.en_US
dc.identifier.citedreferenceZou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295 – 307.en_US
dc.identifier.citedreferenceZou W, Chen L. Inhibitory B7‐family molecules in the tumour microenvironment. Nat Rev Immunol 2008; 8: 467 – 77.en_US
dc.identifier.citedreferenceZou W, Restifo NP. T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 2010; 10: 248 – 56.en_US
dc.identifier.citedreferenceReya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105 – 11.en_US
dc.identifier.citedreferenceDean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5: 275 – 84.en_US
dc.identifier.citedreferenceWicha MS. Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res 2006; 12: 5606 – 7.en_US
dc.identifier.citedreferenceWicha MS. Identification of murine mammary stem cells: implications for studies of mammary development and carcinogenesis. Breast Cancer Res 2006; 8: 109.en_US
dc.identifier.citedreferenceWicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res 2006; 66: 1883 – 90; discussion 95 – 6.en_US
dc.identifier.citedreferenceHuntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer‐stem‐cell research. Nat Rev Cancer 2005; 5: 311 – 21.en_US
dc.identifier.citedreferenceBjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 2005; 5: 899 – 904.en_US
dc.identifier.citedreferenceZhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP. Identification and characterization of ovarian cancer‐initiating cells from primary human tumors. Cancer Res 2008; 68: 4311 – 20.en_US
dc.identifier.citedreferenceBaba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, Marks JR, Berchuck A, et al. Epigenetic regulation of CD133 and tumorigenicity of CD133 + ovarian cancer cells. Oncogene 2009; 28: 209 – 18.en_US
dc.identifier.citedreferenceCurley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR, Foster R. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 2009; 27: 2875 – 83.en_US
dc.identifier.citedreferenceSzotek PP, Pieretti‐Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK. Ovarian cancer side population defines cells with stem cell‐like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 2006; 103: 11154 – 9.en_US
dc.identifier.citedreferenceGinestier C, Hur MH, Charafe‐Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555 – 67.en_US
dc.identifier.citedreferenceLiu S, Ginestier C, Charafe‐Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 2008; 105: 1680 – 5.en_US
dc.identifier.citedreferenceMa S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, Guan XY. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 2008; 6: 1146 – 53.en_US
dc.identifier.citedreferenceCarpentino JE, Hynes MJ, Appelman HD, Zheng T, Steindler DA, Scott EW, Huang EH. Aldehyde dehydrogenase‐expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 2009; 69: 8208 – 15.en_US
dc.identifier.citedreferenceHuang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, Wicha MS, Boman BM. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009; 69: 3382 – 9.en_US
dc.identifier.citedreferenceCharafe‐Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, et al. Aldehyde dehydrogenase 1‐positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 2010; 16: 45 – 55.en_US
dc.identifier.citedreferenceClay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, Wicha MS, Prince ME. Single‐marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 2010; 32: 1195 – 201.en_US
dc.identifier.citedreferenceLanden CN, Goodman BW, Katre AA, Steg AD, Nick AM, Stone R, Miller L, Vivas‐Mejia PE, Jennings NB, Gershenson DM, Bast RC Jr, Coleman RL, et al. Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 2010; 9: 3186 – 99.en_US
dc.identifier.citedreferenceDeng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, Connolly DC, Zhang Y, et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 2010; 5: e10277.en_US
dc.identifier.citedreferenceKryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, Chang A, Zou W. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL‐2 in the tumor microenvironment. J Immunol 2007; 178: 6730 – 3.en_US
dc.identifier.citedreferenceKryczek I, Wei S, Vatan L, Escara‐Wilke J, Szeliga W, Keller ET, Zou W. Cutting edge: opposite effects of IL‐1 and IL‐2 on the regulation of IL‐17+ T cell pool IL‐1 subverts IL‐2‐mediated suppression. J Immunol 2007; 179: 1423 – 6.en_US
dc.identifier.citedreferenceKryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, Brumlik M, Cheng P, Curiel T, Myers L, Lackner A, Alvarez X, et al. B7‐H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 2006; 203: 871 – 81.en_US
dc.identifier.citedreferenceCuriel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon‐Hogan M, Conejo‐Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942 – 9.en_US
dc.identifier.citedreferenceCuriel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, David O, Burow M, et al. Blockade of B7‐H1 improves myeloid dendritic cell‐mediated antitumor immunity. Nat Med 2003; 9: 562 – 7.en_US
dc.identifier.citedreferenceLi C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030 – 7.en_US
dc.identifier.citedreferenceDalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 10158 – 63.en_US
dc.identifier.citedreferenceHuang EH, Heidt DG, Li CW, Simeone DM. Cancer stem cells: a new paradigm for understanding tumor progression and therapeutic resistance. Surgery 2007; 141: 415 – 19.en_US
dc.identifier.citedreferenceDontu G, Al‐Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif 2003; 36 ( Suppl 1 ): 59 – 72.en_US
dc.identifier.citedreferenceLee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum‐cultured cell lines. Cancer Cell 2006; 9: 391 – 403.en_US
dc.identifier.citedreferenceChen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, et al. A hierarchy of self‐renewing tumor‐initiating cell types in glioblastoma. Cancer Cell 2010; 17: 362 – 75.en_US
dc.identifier.citedreferenceCurtis SJ, Sinkevicius KW, Li D, Lau AN, Roach RR, Zamponi R, Woolfenden AE, Kirsch DG, Wong KK, Kim CF. Primary tumor genotype is an important determinant in identification of lung cancer propagating cells. Cell Stem Cell 2010; 7: 127 – 33.en_US
dc.identifier.citedreferenceAlvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I, Mor G. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 2009; 8: 158 – 66.en_US
dc.identifier.citedreferenceBendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski‐Ogilvie T, Ramos‐Mejia V, Rouleau A, Yang J, Bosse M, Lajoie G, Bhatia M. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 2007; 448: 1015 – 21.en_US
dc.identifier.citedreferenceScadden DT. The stem‐cell niche as an entity of action. Nature 2006; 441: 1075 – 9.en_US
dc.identifier.citedreferenceSansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, Chieco P, Bonafe M. IL‐6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117: 3988 – 4002.en_US
dc.identifier.citedreferenceGao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B, Bromberg JF. Mutations in the EGFR kinase domain mediate STAT3 activation via IL‐6 production in human lung adenocarcinomas. J Clin Invest 2007; 117: 3846 – 56.en_US
dc.identifier.citedreferenceGinestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe‐Jauffret E, Birnbaum D, Guan JL, Dontu G, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010; 120: 485 – 97.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.