Show simple item record

1,25‐dihydroxyvitamin D 3 influences cellular homocysteine levels in murine preosteoblastic MC3T3‐E1 cells by direct regulation of cystathionine β‐synthase

dc.contributor.authorKriebitzsch, Carstenen_US
dc.contributor.authorVerlinden, Lieveen_US
dc.contributor.authorEelen, Guyen_US
dc.contributor.authorvan Schoor, Natasja Men_US
dc.contributor.authorSwart, Karinen_US
dc.contributor.authorLips, Paulen_US
dc.contributor.authorMeyer, Mark Ben_US
dc.contributor.authorPike, J Wesleyen_US
dc.contributor.authorBoonen, Stevenen_US
dc.contributor.authorCarlberg, Carstenen_US
dc.contributor.authorVitvitsky, Victor M.en_US
dc.contributor.authorBouillon, Rogeren_US
dc.contributor.authorBanerjee, Rumaen_US
dc.contributor.authorVerstuyf, Annemiekeen_US
dc.date.accessioned2011-12-05T18:35:20Z
dc.date.available2013-02-01T20:26:19Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationKriebitzsch, Carsten; Verlinden, Lieve; Eelen, Guy; van Schoor, Natasja M; Swart, Karin; Lips, Paul; Meyer, Mark B; Pike, J Wesley; Boonen, Steven; Carlberg, Carsten; Vitvitsky, Victor; Bouillon, Roger; Banerjee, Ruma; Verstuyf, Annemieke (2011). "1,25‐dihydroxyvitamin D 3 influences cellular homocysteine levels in murine preosteoblastic MC3T3‐E1 cells by direct regulation of cystathionine β‐synthase." Journal of Bone and Mineral Research 26(12): 2991-3000. <http://hdl.handle.net/2027.42/88106>en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/88106
dc.description.abstractHigh homocysteine (HCY) levels are a risk factor for osteoporotic fracture. Furthermore, bone quality and strength are compromised by elevated HCY owing to its negative impact on collagen maturation. HCY is cleared by cystathionine β‐synthase (CBS), the first enzyme in the transsulfuration pathway. CBS converts HCY to cystathionine, thereby committing it to cysteine synthesis. A microarray experiment on MC3T3‐E1 murine preosteoblasts treated with 1,25‐dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ] revealed a cluster of genes including the cbs gene, of which the transcription was rapidly and strongly induced by 1,25(OH) 2 D 3 . Quantitative real‐time PCR and Western blot analysis confirmed higher levels of cbs mRNA and protein after 1,25(OH) 2 D 3 treatment in murine and human cells. Moreover, measurement of CBS enzyme activity and quantitative measurements of HCY, cystathionine, and cysteine concentrations were consistent with elevated transsulfuration activity in 1,25(OH) 2 D 3 ‐treated cells. The importance of a functional vitamin D receptor (VDR) for transcriptional regulation of cbs was shown in primary murine VDR knockout osteoblasts, in which upregulation of cbs in response to 1,25(OH) 2 D 3 was abolished. Chromatin immunoprecipitation on chip and transfection studies revealed a functional vitamin D response element in the second intron of cbs . To further explore the potential clinical relevance of our ex vivo findings, human data from the Longitudinal Aging Study Amsterdam suggested a correlation between vitamin D status [25(OH)D 3 levels] and HCY levels. In conclusion, this study showed that cbs is a primary 1,25(OH) 2 D 3 target gene which renders HCY metabolism responsive to 1,25(OH) 2 D 3 . © 2011 American Society for Bone and Mineral Researchen_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.other1,25(OH) 2 D 3en_US
dc.subject.otherHOMOCYSTEINE (HCY)en_US
dc.subject.otherCYSTATHIONINE B‐SYNTHASE (CBS)en_US
dc.subject.otherVITAMIN D RECEPTOR (VDR)en_US
dc.subject.otherOSTEOPOROSISen_US
dc.title1,25‐dihydroxyvitamin D 3 influences cellular homocysteine levels in murine preosteoblastic MC3T3‐E1 cells by direct regulation of cystathionine β‐synthaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherLaboratory for Experimental Medicine and Endocrinology (LEGENDO), Catholic University of Leuven, Leuven, Belgiumen_US
dc.contributor.affiliationotherDepartment of Internal Medicine, Endocrine Section and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlandsen_US
dc.contributor.affiliationotherDepartment of Biochemistry, University of Wisconsin at Madison, Madison, WI, USAen_US
dc.contributor.affiliationotherLeuven University Center for Metabolic Bone Disease and Division of Geriatric Medicine, Leuven, Belgiumen_US
dc.contributor.affiliationotherDepartment of Biosciences, University of Eastern Finland, Kuopio, Finlanden_US
dc.contributor.affiliationotherKatholieke Universiteit Leuven, Laboratorium voor Experimentele Geneeskunde en Endocrinologie, Herestraat 49, O&N 1, bus 902, B‐3000 Leuven, Belgium.en_US
dc.identifier.pmid21898591en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/88106/1/493_ftp.pdf
dc.identifier.doi10.1002/jbmr.493en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferenceBouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008 Oct; 29 ( 6 ): 726 – 76.en_US
dc.identifier.citedreferenceSchuster I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta. 2011 Jan; 1814 ( 1 ): 186 – 99.en_US
dc.identifier.citedreferenceKriebitzsch C, Verlinden L, Eelen G, Tan BK, Van Camp M, Bouillon R, Verstuyf A. The impact of 1,25(OH) 2 D 3 and its structural analogs on gene expression in cancer cells—a microarray approach. Anticancer Res. 2009 Sep; 29 ( 9 ): 3471 – 83.en_US
dc.identifier.citedreferenceBouillon R, Bischoff‐Ferrari H, Willett W. Vitamin D and health: perspectives from mice and man. J Bone Miner Res. 2008 Jul; 23 ( 7 ): 974 – 9.en_US
dc.identifier.citedreferenceBoonen S, Vanderschueren D, Haentjens P, Lips P. Calcium and vitamin D in the prevention and treatment of osteoporosis—a clinical update. J Intern Med. 2006 Jun; 259 ( 6 ): 539 – 52.en_US
dc.identifier.citedreferenceHofbauer LC, Hamann C, Ebeling PR. Approach to the patient with secondary osteoporosis. Eur J Endocrinol. 2010 Jun; 162 ( 6 ): 1009 – 20.en_US
dc.identifier.citedreferenceMcLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, Hannan MT, Cupples LA, Kiel DP. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med. 2004 May 13; 350 ( 20 ): 2042 – 9.en_US
dc.identifier.citedreferencevan Meurs JB, Dhonukshe‐Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, de Groot LC, Hofman A, Witteman JC, van Leeuwen JP, Breteler MM, Lips P, Pols HA, Uitterlinden AG. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004 May 13; 350 ( 20 ): 2033 – 41.en_US
dc.identifier.citedreferenceLubec B, Fang‐Kircher S, Lubec T, Blom HJ, Boers GH. Evidence for McKusick's hypothesis of deficient collagen cross‐linking in patients with homocystinuria. Biochim Biophys Acta. 1996 Apr 12; 1315 ( 3 ): 159 – 62.en_US
dc.identifier.citedreferenceSaito M, Marumo K. Collagen cross‐links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010 Feb; 21 ( 2 ): 195 – 214.en_US
dc.identifier.citedreferenceKoh JM, Lee YS, Kim YS, Kim DJ, Kim HH, Park JY, Lee KU, Kim GS. Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Miner Res. 2006 Jul; 21 ( 7 ): 1003 – 11.en_US
dc.identifier.citedreferenceStipanuk MH, Dominy JE Jr, Lee JI, Coloso RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr. 2006 Jun; 136 (6 Suppl): 1652S – 9S.en_US
dc.identifier.citedreferenceChiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. H 2 S biogenesis by human cystathionine gamma‐lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem. 2009 Apr 24; 284 ( 17 ): 11601 – 12.en_US
dc.identifier.citedreferenceSingh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine beta‐synthase and gamma‐cystathionase to H 2 S biogenesis via alternative trans‐sulfuration reactions. J Biol Chem. 2009 Aug 14; 284 ( 33 ): 22457 – 66.en_US
dc.identifier.citedreferenceEberhardt RT, Forgione MA, Cap A, Leopold JA, Rudd MA, Trolliet M, Heydrick S, Stark R, Klings ES, Moldovan NI, Yaghoubi M, Goldschmidt‐Clermont PJ, Farber HW, Cohen R, Loscalzo J. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest. 2000 Aug; 106 ( 4 ): 483 – 91.en_US
dc.identifier.citedreferenceRobert K, Maurin N, Vayssettes C, Siauve N, Janel N. Cystathionine beta synthase deficiency affects mouse endochondral ossification. Anat Rec A Discov Mol Cell Evol Biol. 2005 Jan; 282 ( 1 ): 1 – 7.en_US
dc.identifier.citedreferenceLevasseur R. Bone tissue and hyperhomocysteinemia. Joint Bone Spine. 2009 May; 76 ( 3 ): 234 – 40.en_US
dc.identifier.citedreferenceVerlinden L, Eelen G, Beullens I, Van Camp M, Van Hummelen P, Engelen K, Van Hellemont R, Marchal K, De Moor B, Foijer F, Te Riele H, Beullens M, Bollen M, Mathieu C, Bouillon R, Verstuyf A. Characterization of the condensin component Cnap1 and protein kinase Melk as novel E2F target genes down‐regulated by 1,25‐dihydroxyvitamin D 3. J Biol Chem. 2005 Nov 11; 280 ( 45 ): 37319 – 30.en_US
dc.identifier.citedreferenceDaci E, Udagawa N, Martin TJ, Bouillon R, Carmeliet G. The role of the plasminogen system in bone resorption in vitro. J Bone Miner Res. 1999 Jun; 14 ( 6 ): 946 – 52.en_US
dc.identifier.citedreferenceVitvitsky V, Dayal S, Stabler S, Zhou Y, Wang H, Lentz SR, Banerjee R. Perturbations in homocysteine‐linked redox homeostasis in a murine model for hyperhomocysteinemia. Am J Physiol Regul Integr Comp Physiol. 2004 Jul; 287 ( 1 ): R39 – 46.en_US
dc.identifier.citedreferenceMeyer MB, Goetsch PD, Pike JW. Genome‐wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. J Steroid Biochem Mol Biol. 2010 Jul; 121 ( 1–2 ): 136 – 41.en_US
dc.identifier.citedreferenceKim S, Shevde NK, Pike JW. 1,25‐Dihydroxyvitamin D 3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA‐binding, co‐activator recruitment, and histone acetylation in intact osteoblasts. J Bone Miner Res. 2005 Feb; 20 ( 2 ): 305 – 17.en_US
dc.identifier.citedreferenceKolhouse JF, Stabler SP, Allen RH. Identification and perturbation of mutant human fibroblasts based on measurements of methylmalonic acid and total homocysteine in the culture media. Arch Biochem Biophys. 1993 Jun; 303 ( 2 ): 355 – 60.en_US
dc.identifier.citedreferenceMosharov E, Cranford MR, Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry. 2000 Oct 24; 39 ( 42 ): 13005 – 11.en_US
dc.identifier.citedreferenceFinkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000; 26 ( 3 ): 219 – 25.en_US
dc.identifier.citedreferenceBookout AL, Jeong Y, Downes M, Yu R, Evans RM, Mangelsdorf DJ. Tissue‐specific expression patterns of nuclear receptors [Internet]. Nuclear Receptor Signaling Atlas; 2005 Jun 1. Available at http://www.nursa.org/10.1621/datasets.02001. Accessed September 18, 2011.en_US
dc.identifier.citedreferencePrudova A, Bauman Z, Braun A, Vitvitsky V, Lu SC, Banerjee R. S‐adenosylmethionine stabilizes cystathionine beta‐synthase and modulates redox capacity. Proc Natl Acad Sci U S A. 2006 Apr 25; 103 ( 17 ): 6489 – 94.en_US
dc.identifier.citedreferenceTaoka S, Widjaja L, Banerjee R. Assignment of enzymatic functions to specific regions of the PLP‐dependent heme protein cystathionine beta‐synthase. Biochemistry. 1999 Oct 5; 38 ( 40 ): 13155 – 61.en_US
dc.identifier.citedreferenceGe Y, Konrad MA, Matherly LH, Taub JW. Transcriptional regulation of the human cystathionine beta‐synthase ‐1b basal promoter: synergistic transactivation by transcription factors NF‐Y and Sp1/Sp3. Biochem J. 2001 Jul 1; 357 ( Pt 1 ): 97 – 105.en_US
dc.identifier.citedreferenceWang L, Jhee KH, Hua X, DiBello PM, Jacobsen DW, Kruger WD. Modulation of cystathionine beta‐synthase level regulates total serum homocysteine in mice. Circ Res. 2004 May 28; 94 ( 10 ): 1318 – 24.en_US
dc.identifier.citedreferenceGarcion E, Sindji L, Leblondel G, Brachet P, Darcy F. 1,25‐dihydroxyvitamin D 3 regulates the synthesis of gamma‐glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem. 1999 Aug; 73 ( 2 ): 859 – 66.en_US
dc.identifier.citedreferenceHerrmann M, Tami A, Wildemann B, Wolny M, Wagner A, Schorr H, Taban‐Shomal O, Umanskaya N, Ross S, Garcia P, Hubner U, Herrmann W. Hyperhomocysteinemia induces a tissue specific accumulation of homocysteine in bone by collagen binding and adversely affects bone. Bone. 2009 Mar; 44 ( 3 ): 467 – 75.en_US
dc.identifier.citedreferenceRodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar‐Shavit Z, Shull S, Mann K, Rodan GA. Characterization of a human osteosarcoma cell line (Saos‐2) with osteoblastic properties. Cancer Res. 1987 Sep 15; 47 ( 18 ): 4961 – 6.en_US
dc.identifier.citedreferenceHeaney RP. The Vitamin D requirement in health and disease. J Steroid Biochem Mol Biol. 2005 Oct; 97 ( 1–2 ): 13 – 9.en_US
dc.identifier.citedreferenceLips P, Bouillon R, van Schoor NM, Vanderschueren D, Verschueren S, Kuchuk N, Milisen K, Boonen S. Reducing fracture risk with calcium and vitamin D. Clin Endocrinol (Oxf). 2010 Sep; 73 ( 3 ): 277 – 85. Review.en_US
dc.identifier.citedreferenceRosen CJ, Clinical practice. Vitamin D insufficiency. N Engl J Med. 2011 Jan 20; 364 ( 3 ): 248 – 54.en_US
dc.identifier.citedreferencevan Guldener C, Stehouwer CD. Homocysteine and methionine metabolism in renal failure. Semin Vasc Med. 2005 May; 5 ( 2 ): 201 – 8.en_US
dc.identifier.citedreferenceSelhub J. Public health significance of elevated homocysteine. Food Nutr Bull. 2008 Jun; 29 (2 Suppl): S116 – 25.en_US
dc.identifier.citedreferenceRaposo B, Rodriguez C, Martinez‐Gonzalez J, Badimon L. High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis. 2004 Nov; 177 ( 1 ): 1 – 8.en_US
dc.identifier.citedreferenceLiu G, Nellaiappan K, Kagan HM. Irreversible inhibition of lysyl oxidase by homocysteine thiolactone and its selenium and oxygen analogues. Implications for homocystinuria. J Biol Chem. 1997 Dec 19; 272 ( 51 ): 32370 – 7.en_US
dc.identifier.citedreferenceKang AH, Trelstad RL. A collagen defect in homocystinuria. J Clin Invest. 1973 Oct; 52 ( 10 ): 2571 – 8.en_US
dc.identifier.citedreferenceSaposnik G, Ray JG, Sheridan P, McQueen M, Lonn E. Homocysteine‐lowering therapy and stroke risk, severity, and disability: additional findings from the HOPE 2 trial. Stroke. 2009 Apr; 40 ( 4 ): 1365 – 72.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.