Show simple item record

Transforming growth factor‐beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin‐1 and scleraxis

dc.contributor.authorMendias, Christopher L.en_US
dc.contributor.authorGumucio, Jonathan P.en_US
dc.contributor.authorDavis, Max E.en_US
dc.contributor.authorBromley, Caleb W.en_US
dc.contributor.authorDavis, Carol S.en_US
dc.contributor.authorBrooks, Susan V.en_US
dc.date.accessioned2012-01-05T22:05:01Z
dc.date.available2013-03-04T15:29:54Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationMendias, Christopher L.; Gumucio, Jonathan P.; Davis, Max E.; Bromley, Caleb W.; Davis, Carol S.; Brooks, Susan V. (2012). "Transforming growth factor‐beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin‐1 and scleraxis." Muscle & Nerve 45(1): 55-59. <http://hdl.handle.net/2027.42/89462>en_US
dc.identifier.issn0148-639Xen_US
dc.identifier.issn1097-4598en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89462
dc.description.abstractIntroduction: Transforming growth factor‐beta (TGF‐β) is a well‐known regulator of fibrosis and inflammation in many tissues. During embryonic development, TGF‐β signaling induces expression of the transcription factor scleraxis, which promotes fibroblast proliferation and collagen synthesis in tendons. In skeletal muscle, TGF‐β has been shown to induce atrophy and fibrosis, but the effect of TGF‐β on muscle contractility and the expression of scleraxis and atrogin‐1, an important regulator of muscle atrophy, were not known. Methods: We treated muscles from mice with TGF‐β and measured force production, scleraxis, procollagen Iα2, and atrogin‐1 protein levels. Results: TGF‐β decreased muscle fiber size and dramatically reduced maximum isometric force production. TGF‐β also induced scleraxis expression in muscle fibroblasts, and increased procollagen Iα2 and atrogin‐1 levels in muscles. Conclusion: These results provide new insight into the effect of TGF‐β on muscle contractility and the molecular mechanisms behind TGF‐β–mediated muscle atrophy and fibrosis. Muscle Nerve 45: 55–59, 2012en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherAtrogin‐1en_US
dc.subject.otherFibroblastsen_US
dc.subject.otherMuscle Contractilityen_US
dc.subject.otherScleraxisen_US
dc.subject.otherType I Collagenen_US
dc.titleTransforming growth factor‐beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin‐1 and scleraxisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, BSRB 2019, Ann Arbor, Michigan 48109, USAen_US
dc.identifier.pmid22190307en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89462/1/22232_ftp.pdf
dc.identifier.doi10.1002/mus.22232en_US
dc.identifier.sourceMuscle & Nerveen_US
dc.identifier.citedreferenceAnzano MA, Roberts AB, Smith JM, Sporn MB, De Larco JE. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type alpha and type beta transforming growth factors. Proc Natl Acad Sci USA 1983; 80: 6264 – 6268.en_US
dc.identifier.citedreferenceHeldin C‐H. Development and possible clinical use of antagonists for PDGF and TGF‐beta. Ups J Med Sci 2004; 109: 165 – 178.en_US
dc.identifier.citedreferenceLeask A, Abraham DJ. TGF‐beta signaling and the fibrotic response. FASEB J 2004; 18: 816 – 827.en_US
dc.identifier.citedreferenceLi Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, et al. Transforming growth factor‐beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 2004; 164: 1007 – 1019.en_US
dc.identifier.citedreferenceRoberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83: 4167 – 4171.en_US
dc.identifier.citedreferenceZugmaier G, Paik S, Wilding G, Knabbe C, Bano M, Lupu R, et al. Transforming growth factor beta 1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice. Cancer Res 1991; 51: 3590 – 3594.en_US
dc.identifier.citedreferencePohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze‐Mosgau S, et al. TGF‐beta and fibrosis in different organs—molecular pathway imprints. Biochim Biophys Acta 2009; 1792: 746 – 756.en_US
dc.identifier.citedreferenceChen Y‐W, Nagaraju K, Bakay M, McIntyre O, Rawat R, Shi R, Hoffman EP. Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology 2005; 65: 826 – 834.en_US
dc.identifier.citedreferenceKollias HD, McDermott JC. Transforming growth factor‐beta and myostatin signaling in skeletal muscle. J Appl Physiol 2008; 104: 579 – 587.en_US
dc.identifier.citedreferenceten Dijke P, Hill CS. New insights into TGF‐beta–Smad signalling. Trends Biochem Sci 2004; 29: 265 – 273.en_US
dc.identifier.citedreferenceHopkins DR, Keles S, Greenspan DS. The bone morphogenetic protein 1/Tolloid‐like metalloproteinases. Matrix Biol 2007; 26: 508 – 523.en_US
dc.identifier.citedreferenceCarmeli E, Moas M, Reznick AZ, Coleman R. Matrix metalloproteinases and skeletal muscle: a brief review. Muscle Nerve 2004; 29: 191 – 197.en_US
dc.identifier.citedreferenceJackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 2004; 287: C834 – 843.en_US
dc.identifier.citedreferenceBodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294: 1704 – 1708.en_US
dc.identifier.citedreferenceGomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin‐1, a muscle‐specific F‐box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 2001; 98: 14440 – 14445.en_US
dc.identifier.citedreferenceSandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy‐related ubiquitin ligase atrogin‐1 and cause skeletal muscle atrophy. Cell 2004; 117: 399 – 412.en_US
dc.identifier.citedreferenceMcFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF‐kappaB‐independent, FoxO1‐dependent mechanism. J Cell Physiol 2006; 209: 501 – 514.en_US
dc.identifier.citedreferencePryce BA, Brent AE, Murchison ND, Tabin CJ, Schweitzer R. Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Dev Dyn 2007; 236: 1677 – 1682.en_US
dc.identifier.citedreferenceEdom‐Vovard F, Duprez D. Signals regulating tendon formation during chick embryonic development. Dev Dyn 2004; 229: 449 – 457.en_US
dc.identifier.citedreferenceLéjard V, Brideau G, Blais F, Salingcarnboriboon R, Wagner G, Roehrl MH, et al. Scleraxis and NFATc regulate the expression of the pro‐alpha 1(I) collagen gene in tendon fibroblasts. J Biol Chem 2007; 282: 17665 – 17675.en_US
dc.identifier.citedreferenceMurchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, et al. Regulation of tendon differentiation by scleraxis distinguishes force‐transmitting tendons from muscle‐anchoring tendons. Development 2007; 134: 2697 – 26708.en_US
dc.identifier.citedreferencePryce BA, Watson SS, Murchison ND, Staverosky JA, Dünker N, Schweitzer R. Recruitment and maintenance of tendon progenitors by TGF‐beta signaling are essential for tendon formation. Development 2009; 136: 1351 – 1361.en_US
dc.identifier.citedreferenceMendias CL, Marcin JE, Calerdon DR, Faulkner JA. Contractile properties of EDL and soleus muscles of myostatin‐deficient mice. J Appl Physiol 2006; 101: 898 – 905.en_US
dc.identifier.citedreferenceFaulkner J, Claflin D, McCully K, Jones D. Contractile properties of bundles of fiber segments from skeletal muscles. Am J Physiol Cell Physiol 1982; 243: C66.en_US
dc.identifier.citedreferenceAllen RE, Boxhorn LK. Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor‐beta. J Cell Physiol 1987; 133: 567 – 572.en_US
dc.identifier.citedreferenceAllen RE, Boxhorn LK. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor‐beta, insulin‐like growth factor I, and fibroblast growth factor. J Cell Physiol 1989; 138: 311 – 315.en_US
dc.identifier.citedreferenceAllen RE, Temm‐Grove CJ, Sheehan SM, Rice G. Skeletal muscle satellite cell cultures. Methods Cell Biol 1997; 52: 155 – 176.en_US
dc.identifier.citedreferenceLi X, McFarland DC, Velleman SG. Transforming growth factor‐beta1‐induced satellite cell apoptosis in chickens is associated with beta1 integrin‐mediated focal adhesion kinase activation. Poult Sci 2009; 88: 1725 – 1734.en_US
dc.identifier.citedreferenceLangley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R. Myostatin inhibits myoblast differentiation by down‐regulating MyoD expression. J Biol Chem 2002; 277: 49831 – 49840.en_US
dc.identifier.citedreferenceMcCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. Myostatin negatively regulates satellite cell activation and self‐renewal. J Cell Biol 2003; 162: 1135 – 1147.en_US
dc.identifier.citedreferenceHawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001; 91: 534 – 551.en_US
dc.identifier.citedreferenceSartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 2009; 296: C1248 – 1257.en_US
dc.identifier.citedreferenceAoyama Y, Urushiyama S, Yamada M, Kato C, Ide H, Higuchi S, et al. MFB‐1, an F‐box‐type ubiquitin ligase, regulates TGF‐beta signalling. Genes Cells 2004; 9: 1093 – 1101.en_US
dc.identifier.citedreferenceNoirez P, Torres S, Cebrian J, Agbulut O, Peltzer J, Butler‐Browne G, et al. TGF‐beta1 favors the development of fast type identity during soleus muscle regeneration. J Muscle Res Cell Motil 2006; 27: 1 – 8.en_US
dc.identifier.citedreferenceSmith CA, Stauber F, Waters C, Alway SE, Stauber WT. Transforming growth factor‐beta following skeletal muscle strain injury in rats. J Appl Physiol 2007; 102: 755 – 761.en_US
dc.identifier.citedreferencePhilippou A, Maridaki M, Koutsilieris M. The role of urokinase‐type plasminogen activator (uPA) and transforming growth factor beta 1 (TGFbeta1) in muscle regeneration. In Vivo 2008; 22: 735 – 750.en_US
dc.identifier.citedreferenceTaniguti AP, Pertille A, Matsumura CY, Santo Neto H, Marques MJ. Prevention of muscle fibrosis and myonecrosis in mdx mice by suramin, a TGF‐beta1 blocker. Muscle Nerve 2011; 43: 82 – 87.en_US
dc.identifier.citedreferenceChan Y‐S, Li Y, Foster W, Fu FH, Huard J. The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. Am J Sports Med 2005; 33: 43 – 51.en_US
dc.identifier.citedreferenceChan Y‐S, Li Y, Foster W, Horaguchi T, Somogyi G, Fu FH, Huard J. Antifibrotic effects of suramin in injured skeletal muscle after laceration. J Appl Physiol 2003; 95: 771 – 780.en_US
dc.identifier.citedreferenceNozaki M, Li Y, Zhu J, Ambrosio F, Uehara K, Fu FH, Huard J. Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. Am J Sports Med 2008; 36: 2354 – 2362.en_US
dc.identifier.citedreferenceMiddaugh CR, Mach H, Burke CJ, Volkin DB, Dabora JM, Tsai PK, et al. Nature of the interaction of growth factors with suramin. Biochemistry 1992; 31: 9016 – 9024.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.