Show simple item record

A Recurrent loss‐of‐function alanyl‐tRNA synthetase ( AARS  ) mutation in patients with charcot‐marie‐tooth disease type 2N (CMT2N)

dc.contributor.authorMcLaughlin, Heather M.en_US
dc.contributor.authorSakaguchi, Reikoen_US
dc.contributor.authorGiblin, Williamen_US
dc.contributor.authorWilson, Thomas E.en_US
dc.contributor.authorBiesecker, Leslie G.en_US
dc.contributor.authorLupski, James R.en_US
dc.contributor.authorTalbot, Kevinen_US
dc.contributor.authorVance, Jeffery M.en_US
dc.contributor.authorZüchner, Stephanen_US
dc.contributor.authorLee, Yi‐Chungen_US
dc.contributor.authorKennerson, Marinaen_US
dc.contributor.authorHou, Ya-Mingen_US
dc.contributor.authorNicholson, Garthen_US
dc.contributor.authorAntonellis, Anthonyen_US
dc.date.accessioned2012-01-05T22:05:18Z
dc.date.available2013-03-04T15:29:54Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationMcLaughlin, Heather M.; Sakaguchi, Reiko; Giblin, William; Wilson, Thomas E.; Biesecker, Leslie; Lupski, James R.; Talbot, Kevin; Vance, Jeffery M.; Züchner, Stephan ; Lee, Yi‐chung ; Kennerson, Marina; Hou, Ya‐ming ; Nicholson, Garth; Antonellis, Anthony (2012). "A Recurrent lossâ ofâ function alanylâ tRNA synthetase ( AARS â ) mutation in patients with charcotâ marieâ tooth disease type 2N (CMT2N) ." Human Mutation 33(1): 244-253. <http://hdl.handle.net/2027.42/89474>en_US
dc.identifier.issn1059-7794en_US
dc.identifier.issn1098-1004en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89474
dc.description.abstractCharcot‐Marie‐Tooth (CMT) disease comprises a heterogeneous group of peripheral neuropathies characterized by muscle weakness and wasting, and impaired sensation in the extremities. Four genes encoding an aminoacyl‐tRNA synthetase (ARS) have been implicated in CMT disease. ARSs are ubiquitously expressed, essential enzymes that ligate amino acids to cognate tRNA molecules. Recently, a p.Arg329His variant in the alanyl‐tRNA synthetase ( AARS ) gene was found to segregate with dominant axonal CMT type 2N (CMT2N) in two French families; however, the functional consequence of this mutation has not been determined. To investigate the role of AARS in CMT, we performed a mutation screen of the AARS gene in patients with peripheral neuropathy. Our results showed that p.Arg329His AARS also segregated with CMT disease in a large Australian family. Aminoacylation and yeast viability assays showed that p.Arg329His AARS severely reduces enzyme activity. Genotyping analysis indicated that this mutation arose on three distinct haplotypes, and the results of bisulfite sequencing suggested that methylation‐mediated deamination of a CpG dinucleotide gives rise to the recurrent p.Arg329His AARS mutation. Together, our data suggest that impaired tRNA charging plays a role in the molecular pathology of CMT2N, and that patients with CMT should be directly tested for the p.Arg329His AARS mutation. Hum Mutat 33:244–253, 2012. © 2011 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherAARSen_US
dc.subject.otherCharcot‐Marie‐Tooth Diseaseen_US
dc.subject.otherCMT2Nen_US
dc.subject.otherPeripheral Neuropathyen_US
dc.subject.otherAxonopathyen_US
dc.titleA Recurrent loss‐of‐function alanyl‐tRNA synthetase ( AARS  ) mutation in patients with charcot‐marie‐tooth disease type 2N (CMT2N)en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan Medical School, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan Medical School, Ann Arbor, MIen_US
dc.contributor.affiliationumUniversity of Michigan Medical School, 3710A Medical Sciences II, 1241 E. Catherine St. SPC 5618, Ann Arbor, MI 48109‐5618en_US
dc.contributor.affiliationotherDepartment of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, PAen_US
dc.contributor.affiliationotherNIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MDen_US
dc.contributor.affiliationotherGenetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MDen_US
dc.contributor.affiliationotherDepartments of Molecular and Human Geneticsen_US
dc.contributor.affiliationotherPediatrics, Baylor College of Medicine, Houston, TXen_US
dc.contributor.affiliationotherTexas Children's Hospital, Houston, TXen_US
dc.contributor.affiliationotherDepartment of Clinical Neurology, University of Oxford, Oxford, United Kingdomen_US
dc.contributor.affiliationotherHussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FLen_US
dc.contributor.affiliationotherDepartment of Neurology, The Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang‐Ming University, Taiwan, Republic of Chinaen_US
dc.contributor.affiliationotherNorthcott Neuroscience Laboratory, ANZAC Research Institute and Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australiaen_US
dc.contributor.affiliationotherFaculty of Medicine, University of Sydney, Camperdown, New South Wales, Australiaen_US
dc.identifier.pmid22009580en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89474/1/21635_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89474/2/humu_21635_sm_Mat.pdf
dc.identifier.doi10.1002/humu.21635en_US
dc.identifier.sourceHuman Mutationen_US
dc.identifier.citedreferenceAntonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee‐Lin SQ, Jordanova A, Kremensky I, Christodoulou K, Middleton LT, Suvakumar K, Ionasescu V, Funalot B, Vance JM, Goldfarb LG, Fischbeck KH, Green ED. 2003. Glycyl tRNA synthetase mutations in Charcot‐Marie‐Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 72: 1293 – 1299.en_US
dc.identifier.citedreferenceAntonellis A, Green ED. 2008. The role of aminoacyl‐tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 9: 87 – 107.en_US
dc.identifier.citedreferenceAntonellis A, Lee‐Lin SQ, Wasterlain A, Leo P, Quezado M, Goldfarb LG, Myung K, Burgess S, Fischbeck KH, Green ED. 2006. Functional analyses of glycyl‐tRNA synthetase mutations suggest a key role for tRNA‐charging enzymes in peripheral axons. J Neurosci 26: 10397 – 10406.en_US
dc.identifier.citedreferenceBetz RC, Schoser BG, Kasper D, Ricker K, Ramirez A, Stein V, Torbergsen T, Lee YA, Nothen MM, Wienker TF, Malin JP, Propping P, Reis A, Mortier W, Jentsch TJ, Vorgerd M, Kubisch C. 2001. Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Nat Genet 28: 218 – 219.en_US
dc.identifier.citedreferenceBiesecker LG, Mullikin JC, Facio FM, Turner C, Cherukuri PF, Blakesley RW, Bouffard GG, Chines PS, Cruz P, Hansen NF, Teer JK, Maskeri B, Young AC, Manolio TA, Wilson AF, Finkel T, Hwang P, Arai A, Remaley AT, Sachdev V, Shamburek R, Cannon RO, Green ED. 2009. The ClinSeq Project: piloting large‐scale genome sequencing for research in genomic medicine. Genome Res 19: 1665 – 1674.en_US
dc.identifier.citedreferenceBock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T. 2005. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21: 4067 – 4068.en_US
dc.identifier.citedreferenceCader MZ, Ren J, James PA, Bird LE, Talbot K, Stammers DK. 2007. Crystal structure of human wildtype and S581L‐mutant glycyl‐tRNA synthetase, an enzyme underlying distal spinal muscular atrophy. FEBS Lett 581: 2959 – 2964.en_US
dc.identifier.citedreferenceCooper DN, Youssoufian H. 1988. The CpG dinucleotide and human genetic disease. Hum Genet 78: 151 – 155.en_US
dc.identifier.citedreferenceCotton AM, Avila L, Penaherrera MS, Affleck JG, Robinson WP, Brown CJ. 2009. Inactive X chromosome‐specific reduction in placental DNA methylation. Hum Mol Genet 18: 3544 – 3552.en_US
dc.identifier.citedreferenceCoulondre C, Miller JH, Farabaugh PJ, Gilbert W. 1978. Molecular basis of base substitution hotspots in Escherichia coli. Nature 274: 775 – 780.en_US
dc.identifier.citedreferenceDyck PJ, Lambert EH. 1968. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. II. Neurologic, genetic, and electrophysiologic findings in various neuronal degenerations. Arch Neurol 18: 619 – 625.en_US
dc.identifier.citedreferenceEhrlich M, Gama‐Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C. 1982. Amount and distribution of 5‐methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10: 2709 – 2721.en_US
dc.identifier.citedreferenceEngland JD, Gronseth GS, Franklin G, Carter GT, Kinsella LJ, Cohen JA, Asbury AK, Szigeti K, Lupski JR, Latov N, Lewis RA, Low PA, Fisher MA, Herrman DN, Howard JF, Lauria G, Miller RG, Polydefkis M, Sumner AJ. 2009a. Practice Parameter: evaluation of distal symmetric polyneuropathy: role of autonomic testing, nerve biopsy, and skin biopsy (an evidence‐based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 72: 177 – 184.en_US
dc.identifier.citedreferenceEngland JD, Gronseth GS, Franklin G, Carter GT, Kinsella LJ, Cohen JA, Asbury AK, Szigeti K, Lupski JR, Latov N, Lewis RA, Low PA, Fisher MA, Herrman DN, Howard JF, Lauria G, Miller RG, Polydefkis M, Sumner AJ. 2009b. Practice Parameter: evaluation of distal symmetric polyneuropathy: role of laboratory and genetic testing (an evidence‐based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 72: 185 – 92.en_US
dc.identifier.citedreferenceGreen ED, Birren B, Klapholz S, Myers RM, Riethman H, Roskams J. 1999. Genome analysis: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.en_US
dc.identifier.citedreferenceGreenblatt MS, Bennett WP, Hollstein M, Harris CC. 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855 – 4878.en_US
dc.identifier.citedreferenceHou YM, Westhof E, Giege R. 1993. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc Natl Acad Sci USA 90: 6776 – 6780.en_US
dc.identifier.citedreferenceJordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, Rao CV, Tournev I, Gondim FA, D'Hooghe M, Van Den Bosch L, Timmermans JP, Robberecht W, Gettemans J, Thevelein JM, De Jonghe P, Kremensky I, Timmerman V. 2006. Disrupted function and axonal distribution of mutant tyrosyl‐tRNA synthetase in dominant intermediate Charcot‐Marie‐Tooth neuropathy. Nat Genet 38: 197 – 202.en_US
dc.identifier.citedreferenceLarkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947 – 2948.en_US
dc.identifier.citedreferenceLatour P, Thauvin‐Robinet C, Baudelet‐Mery C, Soichot P, Cusin V, Faivre L, Locatelli MC, Mayencon M, Sarcey A, Broussolle E, Camu W, David A, Rousson R. 2010. A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl‐tRNA synthetase is mutated in dominant axonal charcot‐marie‐tooth disease. Am J Hum Genet 86: 77 – 82.en_US
dc.identifier.citedreferenceLee JW, Beebe K, Nangle LA, Jang J, Longo‐Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL. 2006. Editing‐defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443: 50 – 55.en_US
dc.identifier.citedreferenceLee YC, Lin KP, Soong BW. 2011. The mutational spectrum of Charcot‐Marie‐Tooth disease type II in Chinese Population on Taiwan. Neurology 76: A220.en_US
dc.identifier.citedreferenceMcLaughlin HM, Sakaguchi R, Liu C, Igarashi T, Pehlivan D, Chu K, Iyer R, Cruz P, Cherukuri PF, Hansen NF, Mulliken JC, Biesecker LG, Wilson TE, Ionasescu V, Nicholson G, Searby C, Talbot K, Vance JM, Zuchner S, Szigeti K, Lupski JR, Hou YM, Green ED, Antonellis A. 2010. Compound heterozygosity for loss‐of‐function lysyl‐tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum Genet 87: 560 – 566.en_US
dc.identifier.citedreferenceMossessova E, Lima CD. 2000. Ulp1‐SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5: 865 – 876.en_US
dc.identifier.citedreferenceMurakami H, Ohta A, Ashigai H, Suga H. 2006. A highly flexible tRNA acylation method for non‐natural polypeptide synthesis. Nat Methods 3: 357 – 359.en_US
dc.identifier.citedreferenceMurakami T, Garcia CA, Reiter LT, Lupski JR. 1996. Charcot‐Marie‐Tooth disease and related inherited neuropathies. Medicine (Baltimore) 75: 233 – 250.en_US
dc.identifier.citedreferenceMurphy BC, Scriver CR, Singh SM. 2006. CpG methylation accounts for a recurrent mutation (c.1222C>T) in the human PAH gene. Hum Mutat 27: 975.en_US
dc.identifier.citedreferenceNangle LA, Zhang W, Xie W, Yang XL, Schimmel P. 2007. Charcot‐Marie‐Tooth disease‐associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc Natl Acad Sci USA 104: 11239 – 11244.en_US
dc.identifier.citedreferenceNicholson G, Myers S. 2006. Intermediate forms of Charcot‐Marie‐Tooth neuropathy: a review. Neuromolecular Med 8: 123 – 130.en_US
dc.identifier.citedreferenceParatcha G, Ledda F, Baars L, Coulpier M, Besset V, Anders J, Scott R, Ibanez CF. 2001. Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c‐Ret to lipid rafts. Neuron 29: 171 – 184.en_US
dc.identifier.citedreferenceRibas de Pouplana L, Buechter D, Sardesai NY, Schimmel P. 1998. Functional analysis of peptide motif for RNA microhelix binding suggests new family of RNA‐binding domains. EMBO J 17: 5449 – 5457.en_US
dc.identifier.citedreferenceRice P, Longden I, Bleasby A. 2000. EMBOSS: the European molecular biology open software suite. Trends Genet 16: 276 – 277.en_US
dc.identifier.citedreferenceSalazar‐Grueso EF, Kim S, Kim H. 1991. Embryonic mouse spinal cord motor neuron hybrid cells. Neuroreport 2: 505 – 508.en_US
dc.identifier.citedreferenceSelker EU, Stevens JN. 1985. DNA methylation at asymmetric sites is associated with numerous transition mutations. Proc Natl Acad Sci USA 82: 8114 – 8118.en_US
dc.identifier.citedreferenceShitivelband S, Hou YM. 2005. Breaking the stereo barrier of amino acid attachment to tRNA by a single nucleotide. J Mol Biol 348: 513 – 521.en_US
dc.identifier.citedreferenceSkre H. 1974. Genetic and clinical aspects of Charcot‐Marie‐Tooth's disease. Clin Genet 6: 98 – 118.en_US
dc.identifier.citedreferenceStorkebaum E, Leitao‐Goncalves R, Godenschwege T, Nangle L, Mejia M, Bosmans I, Ooms T, Jacobs A, Van Dijck P, Yang XL, Schimmel P, Norga K, Timmerman V, Callaerts P, Jordanova A. 2009. Dominant mutations in the tyrosyl‐tRNA synthetase gene recapitulate in Drosophila features of human Charcot‐Marie‐Tooth neuropathy. Proc Natl Acad Sci USA 106: 11782 – 11787.en_US
dc.identifier.citedreferenceWan M, Lee SS, Zhang X, Houwink‐Manville I, Song HR, Amir RE, Budden S, Naidu S, Pereira JL, Lo IF, Zoghbi HY, Schanen NC, Francke U. 1999. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 65: 1520 – 1529.en_US
dc.identifier.citedreferenceXie W, Nangle LA, Zhang W, Schimmel P, Yang XL. 2007. Long‐range structural effects of a Charcot‐Marie‐Tooth disease‐causing mutation in human glycyl‐tRNA synthetase. Proc Natl Acad Sci USA 104: 9976 – 9981.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.