Show simple item record

The use of cluster analysis in typological research on community college students

dc.contributor.authorHu, Shoupingen_US
dc.contributor.authorLi, Shaoqingen_US
dc.date.accessioned2012-01-05T22:05:35Z
dc.date.available2013-02-01T20:26:12Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationHu, Shouping; Li, Shaoqing (2011). "The use of cluster analysis in typological research on community college students." New Directions for Institutional Research 2011(S1): 67-81. <http://hdl.handle.net/2027.42/89487>en_US
dc.identifier.issn0271-0579en_US
dc.identifier.issn1536-075Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89487
dc.description.abstractThis chapter provides an introduction to the family of partitional cluster analytical methods, with specific attention to research on community college students. Key decision points and common approaches in the use of cluster analysis are described.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleThe use of cluster analysis in typological research on community college studentsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEducationen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan's School of Educationen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89487/1/417_ftp.pdf
dc.identifier.doi10.1002/ir.417en_US
dc.identifier.sourceNew Directions for Institutional Researchen_US
dc.identifier.citedreferenceAmmon, B. V., Bowman, J., and Mourad, R. “ Who Are Our Students? Cluster Analysis as a Tool for Understanding Community College Student Populations.” Journal of Applied Research in the Community College, 2008, 16, 32 – 44.en_US
dc.identifier.citedreferenceAngrist, J. D., and Pischke, J. S. Mostly Harmless Econometrics: An Empiricist's Companion. Princeton, N.J.: Princeton University Press, 2009.en_US
dc.identifier.citedreferenceBahr, P. R. “ The Bird's Eye View of Community Colleges: A Behavioral Typology of First‐Time Students Based on Cluster Analytic Classification.” Research in Higher Education, 2010, 51, 724 – 749.en_US
dc.identifier.citedreferenceBahr, P. R. Classifying Community Colleges Based on Students' Patterns of Usage. Ann Arbor: Center for the Study of Higher and Postsecondary Education, University of Michigan, 2011.en_US
dc.identifier.citedreferenceBeale, E.M.L. “ Note on Procedures for Variable Selection in Multiple Regression.” Technometrics, 1970, 12, 909 – 914.en_US
dc.identifier.citedreferenceBorden, V.M.H. “ Segmenting Student Markets with a Student Satisfaction and Priorities Survey.” Research in Higher Education, 1995, 36, 73 – 88.en_US
dc.identifier.citedreferenceBorden, V.M.H. “ Identifying and Analyzing Group Differences.” In M. A. Coughlin (ed.), Intermediate/Advanced Statistics in Institutional Research (pp. 132 – 168 ). Tallahassee, Fla.: Association for Institutional Research, 2005.en_US
dc.identifier.citedreferenceBoughan, K. “ The Role of Academic Process in Student Achievement: An Application of Structural Equations Modeling and Cluster Analysis to Community College Longitudinal Data.” AIR Professional File, 2000, 74, 1 – 18.en_US
dc.identifier.citedreferenceCormack, R. M. “ A Review of Classification.” Journal of the Royal Statistical Society, Series A, 1971, 134, 321 – 367.en_US
dc.identifier.citedreferenceEveritt, B., Landau, S., Leese, M., and Stahl, D. Cluster Analysis ( 5th ed. ). Hoboken, N.J.: Wiley, 2011.en_US
dc.identifier.citedreferenceEwell, P., and Boeke, M. Critical Connections: Linking States' Unit Record Systems to Track Student Progress. Indianapolis, Ind.: Lumina Foundation for Education, 2007. Retrieved Feb. 1, 2011, from http://www.luminafoundation.org/publications/Critical_Connections_Web.pdf.en_US
dc.identifier.citedreferenceEwell, P., and Jenkins, D. “ Using State Student Unit Record Data to Increase Community College Student Success.” In T. H. Bers (ed.), Student Tracking in the Community College. New Directions for Community Colleges, no. 143. San Francisco: Jossey‐Bass, 2008.en_US
dc.identifier.citedreferenceFalkenauer, E., and Marchand, A. “ Using K‐Means? Consider ArrayMiner.” Paper presented at the 2001 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, Las Vegas, 2001.en_US
dc.identifier.citedreferenceFowlkes, E. B., Gnanadesikan, R., and Kettenring, J. R. “ Variable Selection in Clustering.” Journal of Classification, 1988, 5, 205 – 228.en_US
dc.identifier.citedreferenceFox, J. Applied Regression Analysis and Generalized Linear Models. Thousand Oaks, Calif.: Sage, 2008.en_US
dc.identifier.citedreferenceGnanadesikan, R., Kettenring, J. R., and Tsao, S. L. “ Weighting and Selection of Variables for Cluster Analysis.” Journal of Classification, 1995, 12, 113 – 136.en_US
dc.identifier.citedreferenceGower, J. C. “ A General Coefficient of Similarity and Some of its Properties.” Biometrics, 1971, 27, 857 – 872.en_US
dc.identifier.citedreferenceGower, J. C. “ Measures of Similarity, Dissimilarity, and Distance.” In S. Kotz, N. L. Johnson, and C. B. Read (eds.), Encyclopedia of Statistical Sciences (Vol. 5, pp. 397 – 405 ). Hoboken, N.J.: Wiley, 1985.en_US
dc.identifier.citedreferenceGower, J. C., and Legendre, P. “ Metric and Euclidean Properties of Dissimilarity Coefficients.” Journal of Classification, 1986, 5, 5 – 48.en_US
dc.identifier.citedreferenceHagedorn, L. S., and Prather, G. “ The Community College Solar System: If University Students Are from Venus Community College Students Must Be from Mars. ” Paper presented at the 2005 annual forum of the Association for Institutional Research, San Diego, 2005.en_US
dc.identifier.citedreferenceHautamäki, V., and others. “ Improving K ‐Means by Outlier Removal.” Image Analysis, 2005, 3540, 219 – 227.en_US
dc.identifier.citedreferenceHubálek, Z. “ Coefficients of Association and Similarity, Based on Binary (Presence‐Absence) Data: An Evaluation.” Biological Reviews, 1982, 57, 669 – 689.en_US
dc.identifier.citedreferenceHunt, L., and Jorgensen, M. “ Clustering Mixed Data.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011, 1, 352 – 361.en_US
dc.identifier.citedreferenceJain, A. K., and Dubes, R. C. Algorithms for Clustering Data. Upper Saddle River, N.J.: Prentice Hall, 1988.en_US
dc.identifier.citedreferenceJain, A. K., Murty, M. N., and Flynn, P. J. “ Data Clustering: A Review.” ACM Computing Surveys, 1999, 31, 264 – 323.en_US
dc.identifier.citedreferenceMilligan, G. W. “ An Examination of the Effect of Six Types of Error Perturbation on Fifteen Clustering Algorithms.” Psychometrika, 1980, 45, 325 – 342.en_US
dc.identifier.citedreferenceMilligan, G. W., and Cooper, M. C. “ A Study of Standardization of Variables in Cluster Analysis.” Journal of Classification, 1988, 5, 181 – 204.en_US
dc.identifier.citedreferenceMorest, V. S., and Jenkins, D. Institutional Research and the Culture of Evidence at Community Colleges. New York: Community College Research Center, Teachers College, Columbia University, 2007. Retrieved Feb. 1, 2011, from http://www.achievingthedream.com/publications/research/institutionalresearchccrc.pdf.en_US
dc.identifier.citedreferencePunj, G., and Stewart, D. W. “ Cluster Analysis in Marketing Research: Review and Suggestions for Application.” Journal of Marketing Research, 1983, 20, 134 – 148.en_US
dc.identifier.citedreferenceRapkin, B. D., and Luke, D. A. “ Cluster Analysis in Community Research: Epistemology and Practice.” American Journal of Community Psychology, 1993, 21, 247 – 277.en_US
dc.identifier.citedreferenceStataCorp. Stata Multivariate Statistics Reference Manual, Release 10. College Station, Tex.: StataCorp LP, 2007.en_US
dc.identifier.citedreferenceSteinley, D. “ Local Optima in K ‐Means Clustering: What You Don't Know May Hurt You.” Psychological Methods, 2003, 8, 294 – 304.en_US
dc.identifier.citedreferenceSteinley, D. “ K ‐Means Clustering: A Half‐Century Synthesis.” British Journal of Mathematical and Statistical Psychology, 2006, 59, 1 – 34.en_US
dc.identifier.citedreferenceSteinley, D., and Brusco, M. J. “ Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures.” Psychometrika, 2008, 73, 125 – 144.en_US
dc.identifier.citedreferenceVanDerLinden, K. Credit Student Analysis: 1999 and 2000. Annapolis Junction, Md.: Community College Press, American Association of Community Colleges, 2002.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.