Show simple item record

rhBMP‐2 has adverse effects on human oral carcinoma cell lines in vivo

dc.contributor.authorKokorina, Natalia A.en_US
dc.contributor.authorLewis, James S.en_US
dc.contributor.authorZakharkin, Stanislav O.en_US
dc.contributor.authorKrebsbach, Paul H.en_US
dc.contributor.authorNussenbaum, Brianen_US
dc.date.accessioned2012-01-05T22:05:41Z
dc.date.available2013-03-04T15:29:54Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationKokorina, Natalia A.; Lewis, James S.; Zakharkin, Stanislav O.; Krebsbach, Paul H.; Nussenbaum, Brian (2012). "rhBMP‐2 has adverse effects on human oral carcinoma cell lines in vivo ." The Laryngoscope 122(1): 95-102. <http://hdl.handle.net/2027.42/89491>en_US
dc.identifier.issn0023-852Xen_US
dc.identifier.issn1531-4995en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89491
dc.description.abstractObjectives/Hypothesis: To establish the relevance of the bone morphogenetic protein (BMP) signaling pathway in human oral squamous cell carcinoma (OSCCA) cell lines and determine if there is a biologic impact of stimulating this pathway with recombinant human (rh) BMP‐2. Study Design: In vitro laboratory investigations and in vivo analysis using an orthotopic animal model for oral cancer. Methods: Gene expression profiles for BMP‐2 and components of the BMP‐signaling pathway were determined using reverse transcriptase‐polymerase chain reaction. In vivo effects were evaluated using Kaplan‐Meier survival analysis and studying histopathologic changes in established tumor xenografts with or without rhBMP‐2 pretreatment. A phosphokinase array was used to detect levels of activation in signaling kinases. Results: The BMP‐2 gene was expressed in 90% of the 30 OSCCA cell lines tested. Gene expression of all components of the BMP‐signaling pathway was highly conserved. Tumor xenografts established with rhBMP‐2–treated cells showed more rapid local growth that resulted in worse animal survival as compared to the control group. These tumors had a more poorly differentiated morphology. Changes in protein kinases suggested interactions of BMP‐2 signaling with the Wnt‐β‐catenin, and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways. Conclusions: Human OSCCA cell lines frequently express BMP‐2 and all necessary components of the BMP‐signaling pathway. Exogenous treatment of human OSCCA cell lines with rhBMP‐2 prior to engraftment in an orthotopic animal model caused the subsequent tumors to be more locally aggressive with worse survival. Continued caution should be used for considering rhBMP‐2 for reconstruction of bone defects in oral cancer patients.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherBone Morphogenetic Proteinen_US
dc.subject.otherOral Canceren_US
dc.subject.otherSquamous Cell Carcinomaen_US
dc.subject.otherLevel of Evidence: 5.en_US
dc.titlerhBMP‐2 has adverse effects on human oral carcinoma cell lines in vivoen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences , University of Michigan School of Dentistry, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Otolaryngology–Head and Neck Surgery , Washington University School of Medicine, St. Louis, Missourien_US
dc.contributor.affiliationotherDepartment of Pathology , Washington University School of Medicine, St. Louis, Missourien_US
dc.contributor.affiliationotherDepartment of Science and Technology , Solae, St. Louis, Missourien_US
dc.contributor.affiliationotherDepartment of Otolaryngology–Head and Neck Surgery, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8115, St. Louis, MO 63110en_US
dc.identifier.pmid21997819en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89491/1/22345_ftp.pdf
dc.identifier.doi10.1002/lary.22345en_US
dc.identifier.sourceThe Laryngoscopeen_US
dc.identifier.citedreferenceSchliephake H. Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg 2002; 31: 469 – 484.en_US
dc.identifier.citedreferenceBurkus JK, Gornet MF, Dickman CA, et al. Anterior lumbar interbody fusion using rhBMP‐2 with tapered interbody cages. J Spinal Disord Tech 2002; 15: 337 – 349.en_US
dc.identifier.citedreferenceFriedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein‐1 (bone morphogenetic protein‐7) in the treatment of tibial nonunions. J Bone Joint Surg 2001; 83 ( suppl 1 ): 151 – 158.en_US
dc.identifier.citedreferenceINFUSE Bone Graft [package insert]. Available at: https://www.infusebonegraft.com/omf_package_insert.pdf. Memphis, TN: Medtronic Sofamor Danek USA, Inc.; 2008.en_US
dc.identifier.citedreferenceNussenbaum B, Krebsbach PH. Practical matters in the application of tissue engineered products for skeletal regeneration in the head and neck region. In: Sandell LJ, Grodzinsky AJ eds. Tissue Engineering in Musculoskeletal Clinical Practice. Rosemont, IL: American Academy of Orthopedic Surgeons; 2004: 151 – 159.en_US
dc.identifier.citedreferenceThawani JP, Wang AC, Than KD, et al. Bone morphogenetic proteins and cancer: review of the literature. Neurosurgery 2010; 66: 233 – 246.en_US
dc.identifier.citedreferencePoynton AR, Lane JM. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine 2002; 27 ( 16 suppl 1 ): S40 – S48.en_US
dc.identifier.citedreferenceGolden JD, Jones AL, Bucholz RW, et al. Recombinant human BMP‐2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects [letter]. J Bone Joint Surg 2008; 90: 1168 – 1169.en_US
dc.identifier.citedreferenceGao Q, Tong W, Luria JS, Wang Z, Nussenbaum B, Krebsbach PH. Effects of bone morphogenetic protein‐2 on proliferation and angiogenesis in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2010; 39: 266 – 271.en_US
dc.identifier.citedreferenceJin Y, Tipoe GL, Liong EC, Lau TY, Fung PC, Leung KM. Overexpression of BMP‐2/4, ‐5 and BMPR‐1A is associated with malignancy of oral epithelium. Oral Oncology 2001; 37: 225 – 233.en_US
dc.identifier.citedreferenceHanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57 – 70.en_US
dc.identifier.citedreferenceZhou X, Temam S, Oh M, et al. Global expression‐based classification of lymph node metastasis and extracapsular spread of oral tongue squamous cell carcinoma. Neoplasia 2006; 8: 925 – 932.en_US
dc.identifier.citedreferenceWillette RN, Gu JL, Lysko PG, et al. BMP‐2 gene expression and effects on human vascular smooth muscle cells. J Vasc Res 1999; 36: 120 – 125.en_US
dc.identifier.citedreferenceGobbi G, Sangiorgi L, Lenzi L, et al. Seven BMPs and all their receptors are simultaneously expressed in osteosarcoma cells. Int J Oncol 2002; 20: 143 – 147.en_US
dc.identifier.citedreferenceValcourt U, Gouttenoire J, Moustakas A, et al. Functions of transforming growth factor‐beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J Biol Chem 2002; 277: 33545 – 33558.en_US
dc.identifier.citedreferenceBau B, Haag J, Schmid E, et al. Bone morphogenetic protein‐mediating receptor‐associated Smads as well as common Smad are expressed in human articular chondrocytes but not up‐regulated or down‐regulated in osteoarthritic cartilage. J Bone Miner Res 2002; 17: 2141 – 2150.en_US
dc.identifier.citedreferenceSebestyen A, Barna G, Nagy K, et al. Smad signal and TGFbeta induced apoptosis in human lymphoma cells. Cytokine 2005; 30: 228 – 235.en_US
dc.identifier.citedreferenceSimic P, Culej JB, Orlic I, et al. Systemically administered bone morphogenetic protein‐6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem 2006; 281: 25509 – 22521.en_US
dc.identifier.citedreferenceSun J, Wei L, Liu X, et al. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater 2009; 5: 1284 – 1293.en_US
dc.identifier.citedreferenceMyers JN, Holsinger FC, Jasser SA, et al. An orthotopic nude mouse model of oral tongue squamous cell carcinoma. Clin Cancer Res 2002; 8: 293 – 298.en_US
dc.identifier.citedreferenceSoares AF, Xavier RL, daCosta Miguel MC, et al. Bone morphogenetic protein‐2/4 and bone morphogenetic protein receptor type IA expression in metastatic and nonmetastatic oral squamous cell carcinoma. Am J Otolaryngol 2010; 31: 266 – 271.en_US
dc.identifier.citedreferenceKupferman ME, Myers JN. Molecular biology of oral cavity squamous cell carcinoma. Otolaryngol Clin North Am 2006; 39: 229 – 247.en_US
dc.identifier.citedreferenceBrandwein‐Gensler M, Teixeira MS, Lewis CM, et al. Oral squamous cell carcinoma: histologic risk assessment, but not margin status, is strongly predictive of local disease‐free and overall survival. Am J Surg Pathol 2005; 29: 167 – 178.en_US
dc.identifier.citedreferencePark KS, Gumbiner BM. Cadherin 6B induces BMP signaling and de‐epithelialization during the epithelial mesenchymal transition of the neural crest. Development 2010; 137: 2691 – 2701.en_US
dc.identifier.citedreferenceTownsend TA, Robinson JY, Deig CR, et al. BMP‐2 and TGFβ2 shared pathways regulate endocardial cell transformation. Cells Tissues Organs 2011; 194: 1 – 12.en_US
dc.identifier.citedreferenceYan C, Grimm WA, Garner WL, et al. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor‐α through bone morphogenetic protein‐2. Am J Surg Pathol 2010; 176: 2247 – 2258.en_US
dc.identifier.citedreferenceKang MH, Kim JS, Seo JS, et al. BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3‐kinase (PI3K)/Akt pathway. Exp Cell Res 2010; 316: 24 – 37.en_US
dc.identifier.citedreferenceKang MH, Kang HN, Kim JL, et al. Inhibition of PI3 kinase/Akt pathway is required for BMP2‐induced EMT and invasion. Oncol Rep 2009; 22: 525 – 534.en_US
dc.identifier.citedreferenceZhang M, Yan Y, Lim YB, et al. BMP‐2 modulates β‐catenin signaling through stimulation of Lrp5 expression and inhibition of β‐TrCP expression in osteoblasts. J Cell Biochem 2009; 108: 896 – 905.en_US
dc.identifier.citedreferenceMolinolo AA, Amornphimoltham P, Squarize CH, et al. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol 2009; 45: 324 – 334.en_US
dc.identifier.citedreferenceYang F, Zeng Q, Yu G, et al. Wnt/β‐catenin signaling inhibits death receptor‐mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal 2006; 18: 679 – 687.en_US
dc.identifier.citedreferenceOdajima T, Sasaki Y, Tanaka N, et al. Abnormal β‐catenin expression in oral cancer with no gene mutation: correlation with expression of cyclin D1 and epidermal growth factor receptor, Ki‐67labeling index, and clinicopathological features. Hum Pathol 2005; 36: 234 – 241.en_US
dc.identifier.citedreferenceZheng Z, Pan J, Chu B, et al. Downregulation and abnormal expression of E‐cadherin and β‐catenin in nasopharyngeal carcinoma: close association with advanced disease stage and lymph node metastasis. Hum Pathol 1999; 30: 458 – 466.en_US
dc.identifier.citedreferenceLiu LK, Jiang XY, Zhou XX, et al. Upregulation of vimentin and aberrant expression of E‐cadherin/β‐catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod Pathol 2010; 23: 213 – 224.en_US
dc.identifier.citedreferenceLeeman RJ, Lui VW, Grandis JR. STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther 2006; 6: 231 – 241.en_US
dc.identifier.citedreferenceWheeler SE, Suzuki S, Thomas SM, et al. Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation. Oncogene 2010; 29: 5135 – 5145.en_US
dc.identifier.citedreferenceLevy O, Ruvinov E, Reem T, et al. Highly efficient osteogenic differentiation of human mesenchymal stem cells by eradication of STAT3 signaling. Int J Biochem Cell Biol 2010; 42: 1823 – 1830.en_US
dc.identifier.citedreferenceMikami Y, Asano M, Honda MJ, Takagi M. Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase levels through JAK/STAT signaling in C3H10T1/2 cells. J Cell Physiol 2010; 223: 123 – 133.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.